因此.当时.. 查看更多

 

题目列表(包括答案和解析)

已知== ,=,设是直线上一点,是坐标原点.

⑴求使取最小值时的;  ⑵对(1)中的点,求的余弦值.

【解析】第一问中利用设,则根据已知条件,O,M,P三点共线,则可以得到x=2y,然后利用

可知当x=4,y=2时取得最小值。

第二问中利用数量积的性质可以表示夹角的余弦值,进而得到结论。

(1)、因为设

可知当x=4,y=2时取得最小值。此时

(2)

 

查看答案和解析>>

设函数

(Ⅰ) 当时,求的单调区间;

(Ⅱ) 若上的最大值为,求的值.

【解析】第一问中利用函数的定义域为(0,2),.

当a=1时,所以的单调递增区间为(0,),单调递减区间为(,2);

第二问中,利用当时, >0, 即上单调递增,故上的最大值为f(1)=a 因此a=1/2.

解:函数的定义域为(0,2),.

(1)当时,所以的单调递增区间为(0,),单调递减区间为(,2);

(2)当时, >0, 即上单调递增,故上的最大值为f(1)=a 因此a=1/2.

 

查看答案和解析>>

,计算得当,当时有,因此猜测当时,一般有不等式________________

 

查看答案和解析>>

,计算得当,当时有,因此猜测当时,一般有不等式________________

查看答案和解析>>

因为函数有0,1,2三个零点,可设函数为f(x)=ax(x-1)(x-2)=ax3-3ax2+2ax
因此b=-3a,又因为当x>2时f(x)>0所以a>0,因此b<0
若由一个2*2列联表中的数据计算得k=4.013,那么有________把握认为两个变量有关系.

查看答案和解析>>


同步练习册答案