(1)求证:平面,学科网 查看更多

 

题目列表(包括答案和解析)

 2.正方体.ABCD- 的棱长为l,点F为的中点.学科网

(I)证明: ∥平面AFC;.学科网

         (Ⅱ)求二面角B-AF-一-C的大小.学科网

学科网

学科网

学科网

学科网

学科网

学科网

学科网

查看答案和解析>>

如图,正三棱柱的底面边长的3,侧棱AA1=D是CB延长线上一点,且BD=BC.

   (Ⅰ)求证:直线BC1//平面AB1D;

   (Ⅱ)求二面角B1—AD—B的大小;

   (Ⅲ)求三棱锥C1—ABB1的体积.

 
 

 

 

 [来源:学|科|网]

 

 

 

 

 

查看答案和解析>>

(本小题满分13分)如图,四面体ABCD中,O是BD的中点,

ABD和BCD均为等边三角形,AB=2,学科网AC=

(1)求证:AO⊥平面BCD; (2)求二面角A—BC—D的大小;

   (3)求O点到平面ACD的距离。

查看答案和解析>>

(本小题满分12分)

如图所示,四棱锥中,底面为正方形,平面分别为的中点.

(1)求证:;

(2)求三棱锥的体积.                        [来源:学*科*网]

 

查看答案和解析>>

.(本小题满分14分)

已知一几何体的三视图如图(甲)示,(三视图中已经给出各投影面顶点的标记)

(1)在已给出的一个面上(图乙),

画出该几何体的直观图;[来源:学,科,网]

(2)设点FHG分别为ACAD

DE的中点,求证:FG//平面ABE

(3)求该几何体的体积.

 

 

 

 

 

[来源:Zxxk.Com]

 

查看答案和解析>>

或7                   ………………………………14分

16.(本小题满分14分)

(1)证明:E、P分别为AC、A′C的中点,

        EP∥A′A,又A′A平面AA′B,EP平面AA′B

       ∴即EP∥平面A′FB                  …………………………………………5分

(2) 证明:∵BC⊥AC,EF⊥A′E,EF∥BC

   ∴BC⊥A′E,∴BC⊥平面A′EC

     BC平面A′BC

   ∴平面A′BC⊥平面A′EC             …………………………………………9分

(3)证明:在△A′EC中,P为A′C的中点,∴EP⊥A′C,

  在△A′AC中,EP∥A′A,∴A′A⊥A′C

      由(2)知:BC⊥平面A′EC   又A′A平面A′EC

      ∴BC⊥AA′

      ∴A′A⊥平面A′BC                   …………………………………………14分

                    …………………………………………15分

(本题也可以利用特征三角形中的有关数据直接求得)

18.(本小题满分15分)

(1)延长BD、CE交于A,则AD=,AE=2

     则S△ADE= S△BDE= S△BCE=

      ∵S△APQ=,∴

      ∴             …………………………………………7分

(2)

          =?

…………………………………………12分

    当

           

…………………………………………15分

(3)

设上式为 ,假设取正实数,则?

时,递减;

递增. ……………………………………12分

                

    

∴不存在正整数,使得

                  …………………………………………16分

显然成立             ……………………………………12分

时,

使不等式成立的自然数n恰有4个的正整数p值为3

                          ……………………………………………16分

 

 

 

 

 

 

 

泰州市2008~2009学年度第二学期期初联考

高三数学试题参考答案

附加题部分

度单位.(1),由

所以

为圆的直角坐标方程.  ……………………………………3分

同理为圆的直角坐标方程. ……………………………………6分

(2)由      

相减得过交点的直线的直角坐标方程为. …………………………10分

D.证明:(1)因为

    所以          …………………………………………4分

    (2)∵   …………………………………………6分

    同理,……………………………………8分

    三式相加即得……………………………10分

22.(必做题)(本小题满分10分)

解:(1)记“恰好选到1个曾经参加过数学研究性学习活动的同学”为事件的, 则其概率为                …………………………………………4分

    答:恰好选到1个曾经参加过数学研究性学习活动的同学的概率为

(1)

              ……………………………………3分

(2)平面BDD1的一个法向量为

设平面BFC1的法向量为

得平面BFC1的一个法向量

∴所求的余弦值为                     ……………………………………6分

(3)设

,由

时,

时,∴   ……………………………………10分

 


同步练习册答案