成立的自然数恰有4个的正整数的值. 泰州市2008-2009学年度第二学期期初联考 查看更多

 

题目列表(包括答案和解析)

已知公差d为正数的等差数列{an}和公比为q(q>1)的等比数列{bn}.
(1)若a1>0,且
an+1
an
bn+1
bn
对一切n∈N*恒成立,求证:d≤a1q-a1
(2)若d>1,集合{a3,a4,a5}∪{b3,b4,b5}={1,2,3,4,5},求使不等式
2an+p
an
bn+1+p+8
bn
成立的自然数n恰有4个的正整数p的值.

查看答案和解析>>

已知公差d为正数的等差数列{an}和公比为q(q>1)的等比数列{bn}.
(1)若a1>0,且数学公式对一切n∈N*恒成立,求证:d≤a1q-a1
(2)若d>1,集合{a3,a4,a5}∪{b3,b4,b5}={1,2,3,4,5},求使不等式数学公式成立的自然数n恰有4个的正整数p的值.

查看答案和解析>>

已知公差d为正数的等差数列{an}和公比为q(q>1)的等比数列{bn}.
(1)若a1>0,且对一切n∈N*恒成立,求证:d≤a1q-a1
(2)若d>1,集合{a3,a4,a5}∪{b3,b4,b5}={1,2,3,4,5},求使不等式成立的自然数n恰有4个的正整数p的值.

查看答案和解析>>

或7                   ………………………………14分

16.(本小题满分14分)

(1)证明:E、P分别为AC、A′C的中点,

        EP∥A′A,又A′A平面AA′B,EP平面AA′B

       ∴即EP∥平面A′FB                  …………………………………………5分

(2) 证明:∵BC⊥AC,EF⊥A′E,EF∥BC

   ∴BC⊥A′E,∴BC⊥平面A′EC

     BC平面A′BC

   ∴平面A′BC⊥平面A′EC             …………………………………………9分

(3)证明:在△A′EC中,P为A′C的中点,∴EP⊥A′C,

  在△A′AC中,EP∥A′A,∴A′A⊥A′C

      由(2)知:BC⊥平面A′EC   又A′A平面A′EC

      ∴BC⊥AA′

      ∴A′A⊥平面A′BC                   …………………………………………14分

                    …………………………………………15分

(本题也可以利用特征三角形中的有关数据直接求得)

18.(本小题满分15分)

(1)延长BD、CE交于A,则AD=,AE=2

     则S△ADE= S△BDE= S△BCE=

      ∵S△APQ=,∴

      ∴             …………………………………………7分

(2)

          =?

…………………………………………12分

    当

           

…………………………………………15分

(3)

设上式为 ,假设取正实数,则?

时,递减;

递增. ……………………………………12分

                

    

∴不存在正整数,使得

                  …………………………………………16分

显然成立             ……………………………………12分

时,

使不等式成立的自然数n恰有4个的正整数p值为3

                          ……………………………………………16分

 

 

 

 

 

 

 

泰州市2008~2009学年度第二学期期初联考

高三数学试题参考答案

附加题部分

度单位.(1),由

所以

为圆的直角坐标方程.  ……………………………………3分

同理为圆的直角坐标方程. ……………………………………6分

(2)由      

相减得过交点的直线的直角坐标方程为. …………………………10分

D.证明:(1)因为

    所以          …………………………………………4分

    (2)∵   …………………………………………6分

    同理,……………………………………8分

    三式相加即得……………………………10分

22.(必做题)(本小题满分10分)

解:(1)记“恰好选到1个曾经参加过数学研究性学习活动的同学”为事件的, 则其概率为                …………………………………………4分

    答:恰好选到1个曾经参加过数学研究性学习活动的同学的概率为

(1)

              ……………………………………3分

(2)平面BDD1的一个法向量为

设平面BFC1的法向量为

得平面BFC1的一个法向量

∴所求的余弦值为                     ……………………………………6分

(3)设

,由

时,

时,∴   ……………………………………10分

 


同步练习册答案