①若,②若,③若,④若 其中正确命题的个数是 A.0 B.1 C.2 D.3 查看更多

 

题目列表(包括答案和解析)

①命题“对任意的x∈R,x3-x2+1≤0”的否定是“存在x∈R,x3-x2+1>0”;
②函数f(x)=2x-x2的零点有2个;
③若函数f(x)=x2-|x+a|为偶函数,则实数a=0;
④函数y=sinx(x∈[-π,π])图象与x轴围成的图形的面积是S=
x
-x
sinxdx;
⑤若函数f(x)=
ax-5(x>6)
(4-
a
2
)x+4(x≤6)
,在R上是单调递增函数,则实数a的取值范围为(1,8).
其中真命题的序号是
①③
①③
(写出所有正确命题的编号).

查看答案和解析>>

下列命题:
①函数y=sin(2x+
π
3
)的单调减区间为[kπ+
π
12
,kπ+
12
],k∈Z;
②函数y=
3
cos2x-sin2x图象的一个对称中心为(
π
6
,0);
③函数y=sin(
1
2
x-
π
6
)在区间[-
π
3
11π
6
]上的值域为[-
3
2
2
2
];
④函数y=cosx的图象可由函数y=sin(x+
π
4
)的图象向右平移
π
4
个单位得到;
⑤若方程sin(2x+
π
3
)-a=0在区间[0,
π
2
]上有两个不同的实数解x1,x2,则x1+x2=
π
6

其中正确命题的序号为
 

查看答案和解析>>

下列命题中:
①若a,b,m都是正数,且
a+m
b+m
a
b
,则b>a;      
②已知a,b都为实数,若|a+b|<|a|+|b|,则ab<0;       
 ③若a,b,c为△ABC的三条边,则a2+b2+c2>2(ab+bc+ca);
④若a>b>c,则
1
a-b
+
1
b-c
+
1
c-a
>0.
其中正确命题的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

下列命题:
①若f(x)是定义在[-1,1]上的偶函数,且在[-1,0]上是增函数,θ∈(
π
4
π
2
),则f(sin θ)>f(cos θ);
②若锐角α,β满足cos α>sin β,则α+β<
π
2

③若f(x)=2cos2
x
2
-1,则f(x+π)=f(x)对x∈R恒成立;
④要得到函数y=sin(
x
2
-
π
4
)
的图象,只需将y=sin
x
2
的图象向右平移
π
4
个单位,
其中真命题是
 
(把你认为所有正确的命题的序号都填上).

查看答案和解析>>

下列命题中不正确的命题个数是(  )
①若A、B、C、D是空间任意四点,则有
AB
+
BC
+
CD
+
DA
=0;
②|
a
|-|
b
|=|
a
+
b
|是
a
b
共线的充要条件;
③若
a
b
共线,则
a
b
所在直线平行;
④对空间任意点O与不共线的三点A、B、C,若
OP
=x
OA
+y
OB
+z
OC
(其中x、y、z∈R),则P、A、B、C四点共面.
A、1B、2C、3D、4

查看答案和解析>>

 

一、选择题:本大题共12个小题,每小题5分,共60分。

1―6BBCDBD  7―12CACAAC

二、填空题:本大题共4个小题,每小题4分,共16分。

13.0.8;

14.

15.; 

16.①③

三、解答题:

17.解:(1)由

       得

      

       由正弦定得,得

      

       又B

      

       又

       又      6分

   (2)

       由已知

             9分

       当

       因此,当时,

      

       当

           12分

18.解:(1)依题意,甲答对主式题数的可能取值为0,1,2,3,则

      

      

      

              4分

       的分布列为

      

0

1

2

3

P

       甲答对试题数的数学期望为

         6分

   (2)设甲、乙两人考试合格的事件分别为A、B,则

      

          9分

       因为事件A、B相互独立,

* 甲、乙两人考试均不合格的概率为

      

       *甲、乙两人至少有一人考试合格的概率为

      

       答:甲、乙两人于少有一人考试合格的概率为  12分

       另解:甲、乙两人至少有一个考试合格的概率为

      

       答:甲、乙两人于少有一人考试合格的概率为 

19.解法一(1)过点E作EG交CF于G,

//

       所以AD=EG,从而四边形ADGE为平行四边形

       故AE//DG    4分

       因为平面DCF, 平面DCF,

       所以AE//平面DCF   6分

   (2)过点B作交FE的延长线于H,

       连结AH,BH。

       由平面

       所以为二面角A―EF―C的平面角

      

       又因为

       所以CF=4,从而BE=CG=3。

       于是    10分

       在

       则

       因为

       解法二:(1)如图,以点C为坐标原点,

       建立空间直角坐标系

       设

       则

      

       于是

 

 

 

 

20.解:(1)当时,由已知得

      

       同理,可解得   4分

   (2)解法一:由题设

       当

       代入上式,得     (*) 6分

       由(1)可得

       由(*)式可得

       由此猜想:   8分

       证明:①当时,结论成立。

       ②假设当时结论成立,

       即

       那么,由(*)得

      

       所以当时结论也成立,

       根据①和②可知,

       对所有正整数n都成立。

       因   12分

       解法二:由题设

       当

       代入上式,得   6分

      

      

       -1的等差数列,

      

          12分

21.解:(1)由椭圆C的离心率

       得,其中

       椭圆C的左、右焦点分别为

       又点F2在线段PF1的中垂线上

      

       解得

          4分

   (2)由题意,知直线MN存在斜率,设其方程为

       由

       消去

       设

       则

       且   8分

       由已知

       得

       化简,得     10分

      

       整理得

* 直线MN的方程为,     

       因此直线MN过定点,该定点的坐标为(2,0)    12分

22.解:   2分

   (1)由已知,得上恒成立,

       即上恒成立

       又

          4分

   (2)当时,

       在(1,2)上恒成立,

       这时在[1,2]上为增函数

        

       当

       在(1,2)上恒成立,

       这时在[1,2]上为减函数

      

       当时,

       令 

       又 

           9分

       综上,在[1,2]上的最小值为

       ①当

       ②当时,

       ③当   10分

   (3)由(1),知函数上为增函数,

       当

      

       即恒成立    12分

      

      

      

       恒成立    14分


同步练习册答案