某校为了解教师使用多媒体进行教学的情况.随机抽取20名授课教师.调查了他们上学期使用多媒体进行教学的次数.结果如茎叶图所示.据此可估计该校上学期教师使用多媒体进行教学的次数在内的概率为 查看更多

 

题目列表(包括答案和解析)

精英家教网为了解某校教师使用多媒体进行教学的情况,采用简单随机抽样的方法,从该校200名授课教师中抽取20名教师,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示如图:据此可估计该校上学期200名教师中,使用多媒体进行教学次数在[15,25)内的人数为
 

查看答案和解析>>

为了解某校教师使用多媒体进行教学的情况,采用简单随机抽样的方法,从该校200名授课教师中抽取20名教师,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示如下:

 


据此可估计该校上学期200名教师中,使用多媒体   进行教学次数在内的人数为    ▲   

查看答案和解析>>

为了解某校教师使用多媒体进行教学的情况,采用简单随机抽样的方法,从该校200名授课教师中抽取20名教师,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示如下:

 


据此可估计该校上学期200名教师中,使用多媒体   进行教学次数在内的人数为    ▲   

查看答案和解析>>

为了解某校教师使用多媒体进行教学的情况,采用简单随机抽样的方法,从该校200名授课教师中抽取20名教师,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示如下:

 


据此可估计该校上学期200名教师中,使用多媒体进行教学次数在内的人数为       

查看答案和解析>>

为了解某校教师使用多媒体进行教学的情况,采用简单随机抽样的方法,从该校200名授课教师中抽取20名教师,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示如下:

据此可估计该校上学期200名教师中,使用多媒体进行教学次数在内的人数为       

 

查看答案和解析>>

说明:

    一、本解答指出了每题要考察的主要知识和能力,并给出了一种或几种解法供参考,如

果考生的解法与本解法不同,可根据试题的主要考察内容比照评分标准指定相应的评分细

则。

    二、对计算题,当考生的解答在某一部分解答未改变该题的内容和难度,可视影响的程

度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答

有较严重的错误,就不再给分。

    三、解答右端所注分数,表示考生正确做到这一步应得的累加分数。

    四、只给整数分数,选择题和填空题不给中间分。

一、选择题:本题考查基础知识和基本运算,每小题5分,满分60分。

1.B   2.A  3.B  4.A  5.B   6.C  7.A  8.B   9.C  10.B  11.D  12.D

二、填空题:本题考查基础知识和基本运算,每小题4分,满分16分。

13.1     14.      15.5      16.8

三、解答题:本大题共6小题,满分74分,解答须写出文字说明、证明过程和演算步骤。

17.本题主要考查平面向量的数量积,两角和与差的三角函数公式、二倍角公式,三角函数的图象与性质等基础知识;考查运算求解能力,满分12分。

解:

  (I)

………………………………………2分

  即函数的解析式为 ?????????????????????????????????????? 4分

(Ⅱ) ??????????????????????????????????????? 6分

所以函数最小正周期???????????????????????????????????????????????????? 8分

取最大值,?????????????????????????????????????????????????????????????????????????? 10分

使函数取最大值的的集合为???????????????????????????????? 12分

18.本题主要考查空间几何体的直观图、三视图,空间线面的位置关系等基础知识;考察空间想象能力及推理论证能力,满分12分。

解(I)由三视图知这个多面体是一个水平放置的柱体,它的底面是边长为的正三角形,侧棱垂直于底面且长为       2分

??????????????????????????????????????????????????????????????????????????????? 3分

???????????????????????????????????????????????????????????????????? 5分

(Ⅱ)连结

四边形是平行四边形,

过点

的中点,………………………………………8分

的中点,

平面平面

平面…………………………………………12分

 

19.本题主要考等差数列、数列求和等基础知识:考查推理论证与运算求解能力;考查化归与转化思想,满分12分。

解(I)在函数的图象上,

数列是以首项为2公差为2的等差数列,???????????????????????????????????????? 2分

?????????????????????????????????????????????????????????????????????? 4分

(Ⅱ)????????????????????????????????????????????????????????????? 6分

,????????????????????????????????????????????????????????????????? 8分

???????????????????????? 10分

?????????????????????????????????????????????????????????????????????????????? 12分

20.本题主要考查概率与统计的基础知识,考查运算求解能力及应用意识。

满分12分。

解:(I)设样本容量为,则,所以

所以样本的容量为120???????????????????????????????????????????????????????????????????????? 3分

(Ⅱ)设成绩在120分到150分的学生有个,

,所以????????????????????????????????????????????????????????????????????? 3分

(Ⅲ)设成绩在120分到150分的学生中,男生比女生多的事件记为A,男生数与女生书记为数对(),则基本事件有:(5,15),(6,14),(7,13),(8,12),(9,11),

(10,10),(11,9),(12,8),(13,7),(14,6),(15,5),(16,4),(17,3),

(18,2),(19,1),(20,0),共16对????????????????????????????????????????????????? 9分

而事件A包含的事件有:(11,9),(12,8),(13,7),(14,6),(15,5),(16,4),

(17,3),(18,2),(19,1),(20,0)共10对。

所以??????????????????????????????????????????????????????????????????????????? 12分

21.本题主要考查利用导数研究函数的性质,考查运算求解能力及数形结合思想。满分12分。

解:(I)

????????????????????????????????????????????????????????????????????????????????? 2分

依题意得??????????????????????????????????????????????????????????????????? 4分

(Ⅱ)

等价于???????????????????????????????????????????????????? 6分

①当恒成立,

的单调递增区间为?????????????????????????????????????????????????????????? 8分

②当时,由

的单调递增区间为?????????????????????????????????????????????????????? 11分

综上所述:当的单调递增区间为

时,的单调递增区间为???????????????????????????????????????? 12分

22.本题主要考查直线与椭圆的位置关系等基础知识;考查运算求解能力及化归与转化思想。满分14分。

解:(I)设椭圆E的方程为

由已知得:

??????????????????????????????????????????????????????????????????????????????????????? 2分

椭圆E的方程为?????????????????????????????????????????????????????????????? 4分

(Ⅱ)设,线段中点的坐标为,则:

化简得:

……5分

直线过点

而点在椭圆E内,

?????????????????????????????????????????????????????????? 6分

所以PQ中垂直的方程为:

所以直线轴上的截距??????????????????????????????????????? 8分

??????????????????????????????????????????????????????????? 9分

(Ⅲ)假设存在符号条件的点,则由(Ⅱ)得:

         ????????????????????????????????????????????????? 10分

????????????????????????? 11分

所以

            ?????????????????????????????????????????? 12分

对于任意实数,上式恒成立,

所以????????????????????????????????????????????????????????????????????? 13分

所以符合条件的点存在,其坐标为???????????????????????????????????????????? 14分

 

 


同步练习册答案