而.由勾股定理可得. ------------ 8分 查看更多

 

题目列表(包括答案和解析)

我们常用构造等式对同一个量算两次的方法来证明组合恒等式,如由等式可得,左边的系数为

而右边的系数为

恒成立,可得

利用上述方法,化简      

 

查看答案和解析>>

已知数列是各项均不为0的等差数列,公差为d,为其前n项和,且满足,.数列满足,为数列的前n项和.

(1)求数列的通项公式和数列的前n项和

(2)若对任意的,不等式恒成立,求实数的取值范围;

(3)是否存在正整数,使得成等比数列?若存在,求出所有的值;若不存在,请说明理由.

【解析】第一问利用在中,令n=1,n=2,

   即      

解得,, [

时,满足

第二问,①当n为偶数时,要使不等式恒成立,即需不等式恒成立.   

 ,等号在n=2时取得.

此时 需满足.  

②当n为奇数时,要使不等式恒成立,即需不等式恒成立.     

 是随n的增大而增大, n=1时取得最小值-6.

此时 需满足

第三问

     若成等比数列,则

即.

,可得,即

        .

(1)(法一)在中,令n=1,n=2,

   即      

解得,, [

时,满足

(2)①当n为偶数时,要使不等式恒成立,即需不等式恒成立.   

 ,等号在n=2时取得.

此时 需满足.  

②当n为奇数时,要使不等式恒成立,即需不等式恒成立.     

 是随n的增大而增大, n=1时取得最小值-6.

此时 需满足

综合①、②可得的取值范围是

(3)

     若成等比数列,则

即.

,可得,即

,且m>1,所以m=2,此时n=12.

因此,当且仅当m=2, n=12时,数列中的成等比数列

 

查看答案和解析>>

设椭圆的左、右顶点分别为,点在椭圆上且异于两点,为坐标原点.

(Ⅰ)若直线的斜率之积为,求椭圆的离心率;

(Ⅱ)若,证明直线的斜率 满足

【解析】(1)解:设点P的坐标为.由题意,有  ①

,得

,可得,代入①并整理得

由于,故.于是,所以椭圆的离心率

(2)证明:(方法一)

依题意,直线OP的方程为,设点P的坐标为.

由条件得消去并整理得  ②

.

整理得.而,于是,代入②,

整理得

,故,因此.

所以.

(方法二)

依题意,直线OP的方程为,设点P的坐标为.

由P在椭圆上,有

因为,所以,即   ③

,得整理得.

于是,代入③,

整理得

解得

所以.

 

查看答案和解析>>

有一箱子,内有3黑球与2白球.有一游戏,从箱子中任取出一球.假设每一颗球被取出的机率都相同,若取出黑球可得奖金50元,而取出白球可得奖金100元,则下列哪一个选项是此游戏的奖金期望值?
(1)70 元  (2)75 元  (3)80 元  (4)85 元  (5)90 元.

查看答案和解析>>

如右图是甲、乙两名运动员某赛季一些场次的得分茎叶

图,由图可得甲、乙两名运动员成绩更稳定的是_________

 

查看答案和解析>>


同步练习册答案