A 为“同形 函数 查看更多

 

题目列表(包括答案和解析)

设函数f(x)=-x3+ax2+a2x+1(x∈R),其中a∈R.
(I)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)当a>0时,求函数f(x)的极大值和极小值;
(III)当a=2时,是否存在函数y=f(x)图象上两点以及函数y=f′(x)图象上两点,使得以这四点为顶点的四边形ABCD同时满足如下三个条件:①四边形ABCD是平行四边形:②AB⊥x轴;③|AB|=4.若存在,指出四边形ABCD的个数;若不存在,说明理由.

查看答案和解析>>

设函数f(x)=-x3+ax2+a2x+1(x∈R),其中a∈R.
(I)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)当a>0时,求函数f(x)的极大值和极小值;
(III)当a=2时,是否存在函数y=f(x)图象上两点以及函数y=f′(x)图象上两点,使得以这四点为顶点的四边形ABCD同时满足如下三个条件:①四边形ABCD是平行四边形:②AB⊥x轴;③|AB|=4.若存在,指出四边形ABCD的个数;若不存在,说明理由.

查看答案和解析>>

设函数f(x)=-x3+ax2+a2x+1(x∈R),其中a∈R.

(Ⅰ)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;

(Ⅱ)当a>0时,求函数f(x)的极大值和极小值;

(Ⅲ)当a=2时,是否存在函数y=f(x)图像上两点以及函数y=(x)图像上两点,使得以这四点为顶点的四边形ABCD同时满足如下三个条件:①四边形ABCD是平行四边形:②AB⊥x轴;③|AB|=4.

若存在,指出四边形ABCD的个数;若不存在,说明理由.

查看答案和解析>>

下列函数中,同时满足条件:①图象以原点为对称中心的中心对称图形;②对于?x,y∈[0,1],都有关系
f(x)+f(y)
2
≤f(
x+y
2
)
的是(  )
A、f(x)=log2|x|
B、f(x)=-sin2x
C、f(x)=tan(x-
π
3
)
D、f(x)=x3

查看答案和解析>>

已知函数f(x)=aln(1+ex)-(a+1)x,(其中a>0),点A(x1,f(x1),,B(x2•f(x2))C(x3,f(x3))从左到右依次是函数y=f(x)图象上的不同点,且x1,x2,x3成等差数列.
(1)证明:函数f(x)在R上是单调递减函数;
(2)证明:△ABC为钝角三角形;
(3)请问△ABC能否成为等腰三角形?若能,求△ABC面积的最大值;若不能,说明理由.

查看答案和解析>>


同步练习册答案