解: (Ⅰ)将圆的一般方程化为标准方程 . 查看更多

 

题目列表(包括答案和解析)

精英家教网A.如图,四边形ABCD内接于⊙O,弧AB=弧AD,过A点的切线交CB的延长线于E点.
求证:AB2=BE•CD.
B.已知矩阵M
2-3
1-1
所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标.
C.已知圆的极坐标方程为:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(1)将圆的极坐标方程化为直角坐标方程;
(2)若点P(x,y)在该圆上,求x+y的最大值和最小值.
D.解不等式|2x-1|<|x|+1.

查看答案和解析>>

A.如图,四边形ABCD内接于⊙O,弧AB=弧AD,过A点的切线交CB的延长线于E点.
求证:AB2=BE•CD.
B.已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标.
C.已知圆的极坐标方程为:
(1)将圆的极坐标方程化为直角坐标方程;
(2)若点P(x,y)在该圆上,求x+y的最大值和最小值.
D.解不等式|2x-1|<|x|+1.

查看答案和解析>>

在极坐标系中,圆和直线相交于两点,求线段的长

【解析】本试题主要考查了极坐标系与参数方程的运用。先将圆的极坐标方程圆 即 化为直角坐标方程即

然后利用直线 ,得到圆心到直线的距离,从而利用勾股定理求解弦长AB。

解:分别将圆和直线的极坐标方程化为直角坐标方程:

 即 即

,  ∴  圆心    ---------3分

直线 ,   ------6分

则圆心到直线的距离,----------8分

      即所求弦长为

 

查看答案和解析>>

已知直线的极坐标方程为ρsin(θ+
π
4
)=
2
2
,圆C的参数方程
x=2cosθ
y=-2+2sinθ
(其中θ为参数).
(Ⅰ)将直线的极坐标方程化为直角坐标方程;
(Ⅱ)将圆的参数方程化为普通方程;
(Ⅲ)求圆C上的点到直线的距离的最小值.

查看答案和解析>>

求圆心在直线l1:y-3x=0上,与x轴相切,且被直线l2:x-y=0截得弦长为2
7
的圆的一般方程.

查看答案和解析>>


同步练习册答案