(2)若是椭圆的一个焦点.且.求椭圆的方程. 查看更多

 

题目列表(包括答案和解析)

椭圆G:
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点为F1(-c,0),F2(c,0),M是椭圆上的一点,且满足
F1M
F2M
=0

(1)求离心率的取值范围;
(2)当离心率e取得最小值时,点N(0,3)到椭圆上的点的最远距离为5
2

①求此时椭圆G的方程;
②设斜率为k(k≠0)的直线L与椭圆G相交于不同的两点A、B,Q为AB的中点,问A、B两点能否关于过点P(0,-
3
3
)
、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.

查看答案和解析>>

椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),直线y=k(x-1)经过椭圆C的一个焦点与其相交于点M,N,且点A(1,
3
2
)
在椭圆C上.
(I)求椭圆C的方程;
(II)若线段MN的垂直平分线与x轴相交于点P,问:在x轴上是否存在一个定点Q,使得
|PQ|
|MN|
为定值?若存在,求出点Q的坐标和
|PQ|
|MN|
的值;若不存在,说明理由.

查看答案和解析>>

椭圆
x2
a2
+
y2
b2
=1(a>b>0)
左右两焦点分别为F1,F2,且离心率e=
6
3

(1)设E是直线y=x+2与椭圆的一个交点,求|EF1|+|EF2|取最小值时椭圆的方程;
(2)已知N(0,1),是否存在斜率为k的直线l与(1)中的椭圆交与不同的两点A,B,使得点N在线段AB的垂直平分线上,若存在,求出直线l在y轴上截距的范围;若不存在,说明理由.

查看答案和解析>>

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点分别为F1(-c,0),F2(c,0),M是椭圆短轴的一个端点,且满足
F1M
F2M
=0,点N( 0,3 )到椭圆上的点的最远距离为5
2

(1)求椭圆C的方程
(2)设斜率为k(k≠0)的直线l与椭圆C相交于不同的两点A、B,Q为AB的中点,P(0,-
3
3
)
;问A、B两点能否关于过点P、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.

查看答案和解析>>

椭圆G:的两个焦点F1(-c,0)、F2(c,0),M是椭圆上的一点,且满足

  (Ⅰ)求离心率e的取值范围;

 (Ⅱ)当离心率e取得最小值时,点N(0,3)到椭圆上的点的最远距离为求此时椭圆G的方程;(ⅱ)设斜率为k(k≠0)的直线l与椭圆G相交于不同的两点A、B,Q为AB的中点,问A、B两点能否关于过点的直线对称?若能,求出k的取值范围;若不能,请说明理由

查看答案和解析>>


同步练习册答案