(理)已知抛物线C:.过点A的直线交抛物线C于P.Q两点.设. (Ⅰ)若点P关于x轴的对称点为M.求证:直线MQ经过抛物线C的焦点F; (Ⅱ)若.求当最大时.直线PQ的方程. 已知函数.. (Ⅰ)讨论函数的单调区间, (Ⅱ)设函数在区间内是减函数.求的取值范围. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

已知抛物线Cy2=2px(p>0)过点A(1,-2).

(1)求抛物线C的方程,并求其准线方程;

(2)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OAl的距离等于?若存在,求直线l的方程;若不存在,说明理由.

查看答案和解析>>

(本小题满分12分)

已知抛物线C:过点A (1 , -2)。

(1)求抛物线C 的方程;

(2)是否存在平行于OA(O为坐标原点)的直线L,使得直线L与抛物线C有公共点,且直线OA与L的距离等于?若存在,求直线L的方程;若不存在,说明理由。

查看答案和解析>>

(本小题满分12分)已知点F是抛物线C:的焦点,S是抛物线C在第一象限内的点,且|SF|=

(Ⅰ)求点S的坐标;

(Ⅱ)以S为圆心的动圆与轴分别交于两点A、B,延长SA、SB分别交抛物线C于M、N两点;

①判断直线MN的斜率是否为定值,并说明理由;

②延长NM交轴于点E,若|EM|=|NE|,求cos∠MSN的值.

 

查看答案和解析>>

(本小题满分12分)

已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线是抛物线的一条切线.

(Ⅰ)求椭圆的方程;

(Ⅱ)过点的动直线L交椭圆CAB两点.问:是否存在一个定点T,使得以AB为直径的圆恒过点T ? 若存在,求点T坐标;若不存在,说明理由.

 

查看答案和解析>>

(本小题满分12分)

已知点F是抛物线C:的焦点,S是抛物线C在第一象限内的点,且|SF|=

(1)求点S的坐标;

(2)以S为圆心的动圆与轴分别交于两点A、B,延长SA、SB分别交抛物线C于M、N两点;

     ①判断直线MN的斜率是否为定值,并说明理由;

     ②延长NM交轴于点E,若|EM|=|NE|,求cos∠MSN的值。

 

 

查看答案和解析>>


同步练习册答案