题目列表(包括答案和解析)
若方程-x-2=0的解在区间(n,n+1)内,n∈N*,根据表格中的数据,则n= ▲ .
x |
-1 |
0 |
1 |
2 |
3 |
ex |
0.37 |
1 |
2.72 |
7.39 |
20.09 |
x+2 |
1 |
2 |
3 |
4 |
5 |
若方程-x-2=0的解在区间(n,n+1)内,n∈N*,根据表格中的数据,则n= ▲ .
x | -1 | 0 | 1 | 2 | 3 |
ex | 0.37 | 1 | 2.72 | 7.39 | 20.09 |
x+2 | 1 | 2 | 3 | 4 | 5 |
若方程-x-2=0的解在区间(n,n+1)内,n∈N*,根据表格中的数据,则n= ▲ .
x | -1 | 0 | 1 | 2 | 3 |
ex | 0.37 | 1 | 2.72 | 7.39 | 20.09 |
x+2 | 1 | 2 | 3 | 4 | 5 |
x | -1 | 0 | 1 | 2 | 3 |
ex | 0.37 | 1 | 2.72 | 7.39 | 20.09 |
x+2 | 1 | 2 | 3 | 4 | 5 |
已知函数 f (x) = x3 -(l-3)x2 -(l +3)x + l -1(l > 0)在区间[n, m]上为减函数,记m的最大值为m0,n的最小值为n0,且满足m0-n0 = 4.
(1)求m0,n0的值以及函数f (x)的解析式;
(2)已知等差数列{xn}的首项.又过点A(0, f (0)),B(1, f (1))的直线方程为y=g(x).试问:在数列{xn}中,哪些项满足f (xn)>g(xn)?
(3)若对任意x1,x2∈ [a, m0](x1≠x2),都有成立,求a的最小值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com