20. 查看更多

 

题目列表(包括答案和解析)

本题满分14分)已知函数,其中.w.w.w.k.s.5.u.c.o.m    

   (I)设函数.若在区间上不单调,求的取值范围;

   (II)设函数  是否存在,对任意给定的非零实数,存在惟一的非零实数),使得成立?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

(本题满分14分) 若F1、F2为双曲线的左、右焦点,O为坐标原点,P在双曲线左支上,M在右准线上,且满足(Ⅰ)求此双曲线的离心率;(Ⅱ)若此双曲线过点,求双曲线方程;(Ⅲ)设(Ⅱ)中双曲线的虚轴端点为B1,B2(B1在y轴正半轴上),求B2作直线AB与双曲线交于A、B两点,求时,直线AB的方程.

查看答案和解析>>

(本题满分14分)某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层,每层2000平方米的楼房。经测算,如果将楼房建为x(x ≥ 10)层,则每平方米的平均建筑费用为560 + 48x(单位:元).⑴写出楼房平均综合费用y关于建造层数x的函数关系式;

⑵该楼房应建造多少层时,可使楼房每平方米的平均综合费用最少?最少值是多少?

(注:平均综合费用 = 平均建筑费用 + 平均购地费用,平均购地费用 = )

查看答案和解析>>

(本题满分14分)如图,已知二次函数,直线lx = 2,直线ly = 3tx(其中1< t < 1,t为常数);若直线l、l与函数的图象所围成的封闭图形如图(5)阴影所示.(1)求y = ;(2)求阴影面积s关于t的函数s = u(t)的解析式;(3)若过点A(1,m)(m≠4)可作曲线s=u(t)(tR)的三条切线,求实数m的取值范围.

查看答案和解析>>

(本题满分14分)

在梯形ABCD中,AB⊥AD,AB∥CD,A、B是两个定点,其坐

标分别为(0,-1)、(0,1),C、D是两个动点,且满足|CD|=|BC|.

(1)求动点C的轨迹E的方程;

(2)试探究在轨迹E上是否存在一点P?使得P到直线y=x-2的

距离最短;

(3)设轨迹E与直线所围成的图形的

面积为S,试求S的最大值。

其它解法请参照给分。

查看答案和解析>>

一.选择题 (本大题共10小题,每题5分,共50分)

1.C;    2.D;    3,A;    4.B;     5.B;

6.B;    7.B;    8.B;    9.D;     10.B;

二.填空题 (本大题共7小题,每题4分,共28分)

11.;  12.;   14.;  15.;  16.;  17.

三.解答题 (本大题共5小题,第18―20题各14分,第21、22题各15分,共72分)

18.解:(1)因为,所以,得…………3分

    又因为…………………………………3分

(2)由,得,…………………………………2分

    所以,…………………………………2分

    ,…………………………………2分

    ………………………………2分

19.如图建立空间直角坐标系,                  

 则

……………………1分

    (1),………………1分

        ,……………………1分

        ……………………1分

      ∴……2分

     又相交,所以平面……1分

(2)设平面的一个法向量为

因为,所以可取…………………………………………………2分

又平面的一个法向量为……………………………………………2分

  …………………………2分

∴二面角的大小为……………………………………………1分

20.解:(1)抛一次骰子面朝下的点数有l、2、3、4四种情况,

而点数大于2的有2种,故闯第一关成功的概率……………………2分

(2)记事件“抛掷次骰子,各次面朝下的点数之和大于”为事件

抛二次骰子面朝下的点数和

情况如右图所示,

…………………………………………2分

抛三次骰子面朝下的点数依次记为:

考虑的情况

时,有1种,时,有3种

时,有6种,时,有10种

……………………………4分

由题意知可取0、1、2、3,

,………………………1分

,………………………1分

,………………………1分

,………………………1分

的分布列为:

 

 

 

   ……………………2分

21.(1)法一:由已知………………………………1分

    设,则,……………………………1分

    ,………………………1分

    由得,

解得………………………2分

法二:记A点到准线距离为,直线的倾斜角为

由抛物线的定义知,………………………2分

………………………3分

(2)设

,………………………1分

首先由

,同理……………………2分

,…………………………2分

即:

    ∴,…………………………2分

,得

得,

的取值范围为…………………………3分

22.(1)时,

,………………………2分

所以切线方程为………………………2分

(2)1°当时,,则

再令

,∴上递减,

∴当时,

,所以上递增,

所以……………………5分

时,,则

由1°知当上递增

时,

所以上递增,∴

;………………………5分

由1°及2°得:………………………1分

 

 

命题人

吕峰波(嘉兴)、 王书朝(嘉善)、 王云林(平湖)

胡水林(海盐)、 顾贯石(海宁)、  张晓东(桐乡)

     吴明华、张启源、徐连根、洗顺良、李富强、吴林华

 


同步练习册答案