=3+ 故选D.[点评] 本题考查了在三角形正弦定理的的运用,以及三角公式恒等变形.化简等知识的运用. 查看更多

 

题目列表(包括答案和解析)

如图6,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.

(Ⅰ)证明:BD⊥PC;

(Ⅱ)若AD=4,BC=2,直线PD与平面PAC所成的角为30°,求四棱锥P-ABCD的体积.

【解析】(Ⅰ)因为

是平面PAC内的两条相较直线,所以BD平面PAC,

平面PAC,所以.

(Ⅱ)设AC和BD相交于点O,连接PO,由(Ⅰ)知,BD平面PAC,

所以是直线PD和平面PAC所成的角,从而.

由BD平面PAC,平面PAC,知.在中,由,得PD=2OD.因为四边形ABCD为等腰梯形,,所以均为等腰直角三角形,从而梯形ABCD的高为于是梯形ABCD面积

在等腰三角形AOD中,

所以

故四棱锥的体积为.

【点评】本题考查空间直线垂直关系的证明,考查空间角的应用,及几何体体积计算.第一问只要证明BD平面PAC即可,第二问由(Ⅰ)知,BD平面PAC,所以是直线PD和平面PAC所成的角,然后算出梯形的面积和棱锥的高,由算得体积

 

查看答案和解析>>

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>

高考资源网( www.ks5u.com),中国最大的高考网站,您身边的高考专家。,高考资源网( www.ks5u.com),中国最大的高考网站,您身边的高考专家。,高考资源网( www.ks5u.com),中国最大的高考网站,您身边的高考专家。高考资源网( www.ks5u.com),中国最大的高考网站,您身边的高考专家。高考资源网( www.ks5u.com),中国最大的高考网站,您身边的高考专家。,故选D.

答案:D

【命题立意】:本题考查了集合的并集运算,并用观察法得到相对应的元素,从而求得答案,本题属于容易题.

查看答案和解析>>

函数有意义,需使高考资源网( www.ks5u.com),中国最大的高考网站,您身边的高考专家。,其定义域为高考资源网( www.ks5u.com),中国最大的高考网站,您身边的高考专家。,排除C,D,又因为高考资源网( www.ks5u.com),中国最大的高考网站,您身边的高考专家。,所以当高考资源网( www.ks5u.com),中国最大的高考网站,您身边的高考专家。时函数为减函数,故选A. w.w.w.k.s.5.u.c.o.m    

答案:A.

【命题立意】:本题考查了函数的图象以及函数的定义域、值域、单调性等性质.本题的难点在于给出的函数比较复杂,需要对其先变形,再在定义域内对其进行考察其余的性质.

查看答案和解析>>

双曲线高考资源网( www.ks5u.com),中国最大的高考网站,您身边的高考专家。的一条渐近线为高考资源网( www.ks5u.com),中国最大的高考网站,您身边的高考专家。,由方程组高考资源网( www.ks5u.com),中国最大的高考网站,您身边的高考专家。,消去y,得高考资源网( www.ks5u.com),中国最大的高考网站,您身边的高考专家。有唯一解,所以△=高考资源网( www.ks5u.com),中国最大的高考网站,您身边的高考专家。,

所以高考资源网( www.ks5u.com),中国最大的高考网站,您身边的高考专家。,高考资源网( www.ks5u.com),中国最大的高考网站,您身边的高考专家。,故选D. w.w.w.k.s.5.u.c.o.m    

答案:D.

【命题立意】:本题考查了双曲线的渐近线的方程和离心率的概念,以及直线与抛物线的位置关系,只有一个公共点,则解方程组有唯一解.本题较好地考查了基本概念基本方法和基本技能.

查看答案和解析>>


同步练习册答案