(2)①由求根公式.得. 查看更多

 

题目列表(包括答案和解析)

我们由两数和的完全平方公式变形可得:.若把此结论代入两数差的完全平方公式中,你能得到什么结论?根据得到的结论,你能解决下面的问题吗?

已知a-2b=9,ab=5,求的值.

查看答案和解析>>

如果x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,那么由求根公式可知,x1=
-b+
b2-4ac
2a
x2=
-b-
b2-4ac
2a

于是有x1+x2=
-2b
2a
=-
b
a
x1x2=
b2-(b2-4ac)
4a2
=
c
a

综上得,设ax2+bx+c=0(a≠0)的两根为x1、x2,则有x1+x2=-
b
a
x1x2=
c
a

这是一元二次方程根与系数的关系,我们可以利用它来解题,例x1,x2是方程x2+6x-3=0的两根,求x12+x22的值.解法可以这样:∵x1+x2=-6,x1x2=-3,则
x
2
1
+
x
2
2
=(x1+x^)2-2x1x2
=(-6)2-2×(-3)=42.
请你根据以上材料解答下列题:
(1)若x2+bx+c=0的两根为1和3,求b和c的值.
(2)已知x1,x2是方程x2-4x+2=0的两根,求(x1-x22的值.

查看答案和解析>>

如果x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,那么由求根公式可知,数学公式数学公式
于是有数学公式数学公式
综上得,设ax2+bx+c=0(a≠0)的两根为x1、x2,则有数学公式数学公式
这是一元二次方程根与系数的关系,我们可以利用它来解题,例x1,x2是方程x2+6x-3=0的两根,求x12+x22的值.解法可以这样:∵x1+x2=-6,x1x2=-3,则数学公式=(-6)2-2×(-3)=42.
请你根据以上材料解答下列题:
(1)若x2+bx+c=0的两根为1和3,求b和c的值.
(2)已知x1,x2是方程x2-4x+2=0的两根,求(x1-x22的值.

查看答案和解析>>

如果x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,那么由求根公式可知,x1=
-b+
b2-4ac
2a
x2=
-b-
b2-4ac
2a

于是有x1+x2=
-2b
2a
=-
b
a
x1-x2=
b2-(b2-4ac)
4a2
=
c
a

综上得,设ax2+bx+c=0(a≠0)的两根为x1、x2,则有x1+x2=-
b
a
x1x2=
c
a

这是一元二次方程根与系数的关系,我们可以利用它来解题,例x1,x2是方程x2+6x-3=0的两根,求x12+x22的值.解法可以这样:∵x1+x2=-6,x1x2=-3,则
x21
+
x22
=(x1+x^)2-2x1x2
=(-6)2-2×(-3)=42.
请你根据以上材料解答下列题:
(1)若x2+bx+c=0的两根为1和3,求b和c的值.
(2)已知x1,x2是方程x2-4x+2=0的两根,求(x1-x22的值.

查看答案和解析>>

如果x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,那么由求根公式可知,
于是有
综上得,设ax2+bx+c=0(a≠0)的两根为x1、x2,则有
这是一元二次方程根与系数的关系,我们可以利用它来解题,例x1,x2是方程x2+6x-3=0的两根,求x12+x22的值.解法可以这样:∵x1+x2=-6,x1x2=-3,则=(-6)2-2×(-3)=42.
请你根据以上材料解答下列题:
(1)若x2+bx+c=0的两根为1和3,求b和c的值.
(2)已知x1,x2是方程x2-4x+2=0的两根,求(x1-x22的值.

查看答案和解析>>


同步练习册答案