20. (Ⅰ)证明:由四边形为菱形.. 可得为正三角形.因为为的中点.所以. ----1分 又∥.因此.-------------------2分 因为平面.平面.所以. ---3分 而.所以平面. ------------4分 又平面.所以. --------------5分 (Ⅱ)解:设.为上任意一点.连接. 由(Ⅰ)可知:平面. 则为与平面所成的角.-----------------6分 在中.. 所以当最短时.最大. ------------------7分 即当时.最大.此时. 因此.又.所以.于是. --------8分 因为⊥平面.平面. 所以平面平面. ----------------9分 过作于.则由面面垂直的性质定理可知:平面. 过作于.连接. 则由三垂线定理可知:为二面角的平面角. --------10分 在中.. 又是的中点.在中. 又 ------------11分 在中. 即二面角的余弦值为. ------------12分 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

为正方形的中心,四边形是平行四边形,且平面平面,若.

(Ⅰ)求证:平面.

(Ⅱ)线段上是否存在一点,使平面?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

(本小题满分12分)

有编号为,,…的10个零件,测量其直径(单位:cm),得到下面数据:


其中直径在区间[1.48,1.52]内的零件为一等品。

(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;

(Ⅱ)从一等品零件中,随机抽取2个.

     (ⅰ)用零件的编号列出所有可能的抽取结果;

     (ⅱ)求这2个零件直径相等的概率。本小题主要考查用列举法计算随机事件所含的基本事件数及事件发生的概率等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力。满分12分

【解析】(Ⅰ)解:由所给数据可知,一等品零件共有6个.设“从10个零件中,随机抽取一个为一等品”为事件A,则P(A)==.

      (Ⅱ)(i)解:一等品零件的编号为.从这6个一等品零件中随机抽取2个,所有可能的结果有:,,,

,,,共有15种.

      (ii)解:“从一等品零件中,随机抽取的2个零件直径相等”(记为事件B)的所有可能结果有:,共有6种.

      所以P(B)=.

(本小题满分12分)

如图,在五面体ABCDEF中,四边形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.

(Ⅰ)求异面直线CE与AF所成角的余弦值;      

(Ⅱ)证明CD⊥平面ABF;

查看答案和解析>>

(本小题满分12分)

有编号为,,…的10个零件,测量其直径(单位:cm),得到下面数据:


其中直径在区间[1.48,1.52]内的零件为一等品。

(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;

(Ⅱ)从一等品零件中,随机抽取2个.

     (ⅰ)用零件的编号列出所有可能的抽取结果;

     (ⅱ)求这2个零件直径相等的概率。本小题主要考查用列举法计算随机事件所含的基本事件数及事件发生的概率等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力。满分12分

【解析】(Ⅰ)解:由所给数据可知,一等品零件共有6个.设“从10个零件中,随机抽取一个为一等品”为事件A,则P(A)==.

      (Ⅱ)(i)解:一等品零件的编号为.从这6个一等品零件中随机抽取2个,所有可能的结果有:,,,

,,,共有15种.

      (ii)解:“从一等品零件中,随机抽取的2个零件直径相等”(记为事件B)的所有可能结果有:,共有6种.

      所以P(B)=.

(本小题满分12分)

如图,在五面体ABCDEF中,四边形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.

(Ⅰ)求异面直线CE与AF所成角的余弦值;      

(Ⅱ)证明CD⊥平面ABF;

查看答案和解析>>

(本小题满分12分)

如图椭圆的右顶点是,上下两个顶点分别为,四边形是矩形(为原点),点分别为线段的中点.

(Ⅰ)证明:直线与直线的交点在椭圆上;

(Ⅱ)若过点的直线交椭圆于两点,关于轴的对称点(不共线),

问:直线是否经过轴上一定点,如果是,求这个定点的坐标,如果不是,说明理由.

 

查看答案和解析>>

(本小题满分12分)如图所示,四棱锥P—ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.

(1)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;

(2)求证:无论点E在BC边的何处,都有PE⊥AF;

(3)当BE为何值时,PA与平面PDE所成角的大小为45°.

 

查看答案和解析>>


同步练习册答案