题目列表(包括答案和解析)
若数列满足:是常数),则称数列为二阶线性递推数列,且定义方程为数列的特征方程,方程的根称为特征根; 数列的通项公式均可用特征根求得:
①若方程有两相异实根,则数列通项可以写成,(其中是待定常数);
②若方程有两相同实根,则数列通项可以写成,(其中是待定常数);
再利用可求得,进而求得.
根据上述结论求下列问题:
(1)当,()时,求数列的通项公式;
(2)当,()时,求数列的通项公式;
(3)当,()时,记,若能被数整除,求所有满足条件的正整数的取值集合.
若数列满足条件:存在正整数,使得对一切都成立,则称数列为级等差数列.
(1)已知数列为2级等差数列,且前四项分别为,求的值;
(2)若为常数),且是级等差数列,求所有可能值的集合,并求取最小正值时数列的前3项和;
(3)若既是级等差数列,也是级等差数列,证明:是等差数列.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com