题目列表(包括答案和解析)
在△ABC中,a、b、c分别是角A、B、C的对边,cosB=.
⑴ 若cosA=-,求cosC的值; ⑵ 若AC=,BC=5,求△ABC的面积.
【解析】第一问中sinB==, sinA==
cosC=cos(180°-A-B)=-cos(A+B) =sinA.sinB-cosA·cosB
=×-(-)×=
第二问中,由=+-2AB×BC×cosB得 10=+25-8AB
解得AB=5或AB=3综合得△ABC的面积为或
解:⑴ sinB==, sinA==,………………2分
∴cosC=cos(180°-A-B)=-cos(A+B) ……………………3分
=sinA.sinB-cosA·cosB ……………………4分
=×-(-)×= ……………………6分
⑵ 由=+-2AB×BC×cosB得 10=+25-8AB ………………7分
解得AB=5或AB=3, ……………………9分
若AB=5,则S△ABC=AB×BC×sinB=×5×5×= ………………10分
若AB=3,则S△ABC=AB×BC×sinB=×5×3×=……………………11分
综合得△ABC的面积为或
判断题:
(1)
两个长度相等的向量一定相等;[
](2)
相等的向量起点必相同;[
](3)
平行向量就是共线向量;[
](4)
若向量a的模小于b的模,则a<b;[
](5)
质量、动量、功、加速度都是向量;[
](6)
与共线,则A,B,C,D四点必在一条直线上;[
](7)
向量a与b平行,则a与b的方向相同或相反;[
](8)
在△ABC中,;[
](9)
若向量a与b有共同的起点,则以b的终点为起点,以a的终点为终点的向量等于b-a;[
](10)
若且b≠0,当a=时,则一定有a,b共线;[
](11)
若a·b=0,则或;[
](12)
若a·b=a·c,且a≠0,则b=c;[
](13)
向量a在b方向上的射影是一个模等于(是a与b的夹角),方向与b相同或相反的向量;[ ]
(14).
[
]湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com