第Ⅱ卷填写在题中横线上. 查看更多

 

题目列表(包括答案和解析)

按如图所示的规律用同样规格的黑白两色正方形瓷砖铺设矩形地面,请观察下列图形,并解答下面问题:

(1)将下表填写完整
图形编号 (1) (2) (3) (4)   …
黑色瓷砖的块数 10 14 18
22
22
  …
白色瓷砖的块数 2 6 12
20
20
  …
(2)第(n)个图形中,共有黑色瓷砖
4n+6
4n+6
块,共有白色瓷砖
n(n+1)
n(n+1)
块;(用含n的代数式表示,答案直接写在题中横线上);
(3)如果每块黑色瓷砖12元每块白瓷砖10元,求购买铺设第(8)个图形所需瓷砖的费用;
(4)是否存在第(n)个图形,该图形所需白、黑瓷砖的总数为18325块?若存在,求出该图形的编号n;若不存在,请说明理由.

查看答案和解析>>

26、有100名学生参加两次科技知识测试,条形图显示两次测试的分数分布情况.
请你根据条形图提供的信息,回答下列问题(把答案填在题中横线上):
(1)两次测试最低分在第
次测试中;
(2)第
次测试成绩较好;
(3)第一次测试中,中位数在
分数段,第二次测试中,中位数在
分数段.

查看答案和解析>>

(1)已知:如图①,△AOB和△COD都是等边三角形.
求证:(1)①AC=BD,②∠APB=60°;
(2)如图②,△AOB和△COD都是等腰三角形,若OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD间的等量关系式为
AC=BD
AC=BD
,∠APB的大小为
α
α

(3)如图③,在△AOB与△COD中,若OA=k•OB,OC=k•OD(k>1),∠AOB=∠COD=α,则AC与BD间的等量关系式为
AC=k•BD
AC=k•BD
,∠APB的大小为
180°-α
180°-α


注:第(2)、(3)小题请将答案直接写在题中横线上.

查看答案和解析>>

24、先阅读下列因式分解的过程,再回答所提出的问题:
例1:1+ax+ax(1+ax)=(1+ax)(1+ax)
=(1+ax)2
例2:1+ax+ax(1+ax)+ax(1+ax)2=(1+ax)(1+ax)+ax(1+ax)2
=(1+ax)2+ax(1+ax)2
=(1+ax)2(1+ax)
=(1+ax)3
(1)分解因式:1+ax+ax(1+ax)+ax(1+ax)2+…+ax(1+ax)n=
(1+ax)n+1

(2)分解因式:x-1-x(x-1)+x(x-1)2-x(x-1)3+…-x(x-1)2003+x(x-1)2004
(答题要求:请将第(1)问的答案填写在题中的横线上)

查看答案和解析>>

有100名学生参加两次科技知识测试,条形图显示两次测试的分数分布情况.

请你根据条形图提供的信息,回答下列问题(把答案填在题中横线上);

(1)两次测试最低分在第            次测试中;

(2)第           次测试较容易;

(3)第一次测试中,中位数在               分数段,第二次测试中,中位数在               分数段.

 

查看答案和解析>>

一、选择题:

           1C  2B  3D  4D  5C  6A  7A  8A

二、填空题:

9. 2    10.    11.    12.  ,.

三、解答题;

13.原式=-4++3+2……………..4分

           =3-1………………………..5分

14.原式=3(a+1)-(a-1) ………………..1分

        =3a+3-a+1

        =2a+4    ………………………..3分

   当a=-2时,原式=2(-2+2)=2….5分

15.  去分母得  x-1>3(5-x)    

去括号得   x-1>15-3x     ………………1分

 移项得     x+3x>15+1    ………………2分

合并同类项得   4x>16    ……………….3分

系数化为1得   x>4      …………………4分

这个不等式的解集在数轴上表示:

 

 

                                           …………5分

16.证明:∵四边形ABCD是平行四边形

∴AB∥CD且AB=CD…   1分

∴∠ABE=∠CDF………   2分

又∵AE⊥BD,CF⊥BD

∴∠AEB=∠CFD=900…  3分

∴Rt△ABE≌Rt△CDF…   4分

∴∠BAE=∠DCF………  .5分

17. 设服装厂原来每天加工套演出服.

根据题意,得. ….   2分

解得.…………………………….3分

经检验,是原方程的根.………  .4分

答:服装厂原来每天加工20套演出服 ..5分 

18. 依题意得,直线l的解析式为y=x.   ………………………………………..2分

∵A(a,3)在直线y= x上,

∴a=3,即A(3,3).     …………………………………………………………3分

又∵A(3,3)在的图像上,可求得k=9.   ………………………………4分

所以反比例函数的解析式为:   ………………………………….….5分

19. (1)

 

 

 

 

      (2)

 

 

 

 

 

 

 

 

20.在中,

 …………….  2分

中,

…………3分

烟囱高……………………….4分

这棵大树不会被歪倒的烟囱砸着.   ……………………………..5分

 

21. (1)

  ∴选出的恰好是“每天锻炼超过1小时”的学生的概率是.          1分

(2)720×(1-)-120-20=400(人)

∴“没时间”的人数是400人.                                    2分

 补全频数分布直方图略.                                          3分

(3)4.3×(1-)=3.225(万人)

 ∴2008年全州初中毕业生每天锻炼未超过1小时约有3.225万人.     4分

(4)说明:内容健康,能符合题意即可.                               5分

22.(1)+1或-1   …………………………………………..  2分

  (2)45………………………..5分

23.当a=0时,原方程为,解得

 即原方程无整数解.   ……………1分     

时,方程为一元二次方程,它至少有一个整数根,

说明判别式为完全平方数, ……2分

从而为完全平方数,设,则为正奇数,且否则(),

所以,

由求根公式得

所以   …………….. 5分

要使为整数,而为正奇数,只能,从而; ……. 6分

要使为整数,可取1,5,7,从而  ………7分

综上所述,的值为

24.(1)由题意,得,……………..1分

解得

抛物线的解析式为

(2)如图1,当在运动过程中,存在与坐标轴相切的情况。

设点P坐标为,则当与y轴相切时,

=1, =1.

=-1,得=.             

.

轴相切时有

抛物线开口向上,且顶点在轴的上方,

解得2,

综上所述,符合要求的圆心P有三个,其坐标分别为:

…………………………………4分

(3)设点Q坐标为,则当与两条坐标轴都相切时,有.

,得

解得

,得.

此方程无解.

O的半径为………………………7分

25. (1)EN与MF的数量关系为:EN=MF;. ………1分

(2)EN与MF的相等关系依然成立.

证明:连接DE、DF(见图2)

D、E分别是AB、AC的中点,

 DEBC,DE=BC,同理DFAC,DF=AC.

 是等边三角形,

 BC=AC,DE=DF.

 ,,

 是等边三角形,

DN=DM,

 

              ………………………………..6分

(3)EN与MF的相等关系仍然成立.      ………………    ……….7分

     图形正确1分.


同步练习册答案