题目列表(包括答案和解析)
(1)求出x的可能取值情况(即全体基本事件);
(2)下列事件由哪些基本事件组成(用x的取值回答).
①x的取值为2的倍数(记为事件A);
②x的取值大于3(记为事件B);
③x的取值不超过2(记为事件C);
④x的取值是质数(记为事件D).
(3)判断上述事件是否为古典概型,并求出其概率.
(1)如图3-3-4,转盘上有8个面积相等的扇形,转动转盘,求转盘停止转动时指针落在阴影部分的概率.
图3-3-4
(2)在500 mL的水中有一个草履虫,现从中随机取出2 mL水样放到显微镜下观察,求发现草履虫的概率.
某中学研究性学习小组,为了考察高中学生的作文水平与爱看课外书的关系,在本校高三年级随机调查了 50名学生.调査结果表明:在爱看课外书的25人中有18人作文水平好,另7人作文水平一般;在不爱看课外书的25人中有6人作文水平好,另19人作文水平一般.
(Ⅰ)试根据以上数据完成以下2×2列联表,并运用独立性检验思想,指出有多大把握认为中学生的作文水平与爱看课外书有关系?
高中学生的作文水平与爱看课外书的2×2列联表
|
爱看课外书 |
不爱看课外书 |
总计 |
作文水平好 |
|
|
|
作文水平一般 |
|
|
|
总计 |
|
|
|
(Ⅱ)将其中某5名爱看课外书且作文水平好的学生分别编号为1、2、3、4、5,某5名爱看课外书且作文水平一般的学生也分别编号为1、2、3、4、5,从这两组学生中各任选1人进行学习交流,求被选取的两名学生的编号之和为3的倍数或4的倍数的概率.
参考公式:,其中.
参考数据:
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
【解析】本试题主要考查了古典概型和列联表中独立性检验的运用。结合公式为判定两个分类变量的相关性,
第二问中,确定
结合互斥事件的概率求解得到。
解:因为2×2列联表如下
|
爱看课外书 |
不爱看课外书 |
总计 |
作文水平好 |
18 |
6 |
24 |
作文水平一般 |
7 |
19 |
26 |
总计 |
25 |
25 |
50 |
下列概率模型中,古典概型的个数为( )
(1)从区间[1,10]内任取一个数,求取到1的概率;
(2)从1,2,…,9,10中任取一个整数,求取到1的概率;
(3)向一个正方形ABCD内任意投一点P,求点P刚好与点A重合的概率;
(4)向上抛掷一枚质地不均匀的硬币,求出现反面朝上的概率.
A.1 B.2
C.3 D.4
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com