光的干涉 (1)双缝干涉 在暗室里.托马斯·杨利用壁上的小孔得到一束阳光.在这束光里.在垂直光束方向里放置了两条靠得很近的狭缝的黑屏.在屏在那边再放一块白屏.如图2-1-1所示. 于是得到了与缝平行的彩色条纹,如果在双缝前放一块滤光片.就得到明暗相同的条纹. A.B为双缝.相距为d.M为白屏与双缝相距为l.DO为AB的中垂线.屏上距离O为x的一点P到双缝的距离 由于d.x均远小于l.因此PB+PA=2l.所以P点到A.B的光程差为: 若A.B是同位相光源.当δ为波长的整数倍时.两列波波峰与波峰或波谷与波谷相遇.P为加强点,当δ为半波长的奇数倍时.两列波波峰与波谷相遇.P为减弱点.因此.白屏上干涉明条纹对应位置为暗条纹对应位置为.其中k=0的明条纹为中央明条纹.称为零级明条纹,k=1.2-时.分别为中央明条纹两侧的第1条.第2条-明条纹.称为一级.二级-明条纹. 相邻两明条纹间的距离.该式表明.双缝干涉所得到干涉条纹间的距离是均匀的.在d.l一定的条件下.所用的光波波长越长.其干涉条纹间距离越宽.可用来测定光波的波长. (2)类双缝干涉 双缝干涉实验说明.把一个光源变成“两相干光源 即可实现光的干涉.类似装置还有 ①菲涅耳双面镜: 如图2-1-2所示.夹角α很小的两个平面镜构成一个双面镜.点光源S经双面镜生成的像和就是两个相干光源. ②埃洛镜 如图2-1-3所示.一个与平面镜L距离d很小(数量级0.1mm)的点光源S.它的一部分光线掠入射到平面镜.其反射光线与未经反射的光线叠加在屏上产生干涉条纹. 因此S和就是相干光源.但应当注意.光线从光疏介质射入光密介质.反射光与入射光相位差π.即发生“并波损失 .因此计算光程差时.反身光应有的附加光程差. ③双棱镜 如图2-1-4所示.波长的平行激光束垂直入射到双棱镜上.双棱镜的顶角.宽度w=4.0cm.折射率n=1.5.问:当幕与双棱镜的距离分别为多大时.在幕上观察到的干涉条纹的总数最少和最多?最多时能看到几条干涉条纹? 平行光垂直入射.经双棱镜上.下两半折射后.成为两束倾角均为θ的相干平行光.当幕与双棱镜的距离等于或大于时.两束光在幕上的重叠区域为零.干涉条纹数为零.最少.当幕与双棱镜的距离为L时.两束光在幕上的重叠区域最大.为.干涉条纹数最多.利用折射定律求出倾角θ.再利用干涉条纹间距的公式及几何关系.即可求解. 式中α是双棱镜顶角.θ是入射的平行光束经双棱镜上.下两半折射后.射出的两束平行光的倾角.如图2-1-5所示.相当于杨氏光涉.»D,.而 条纹间距 可见干涉条纹的间距与幕的位置无关. 当幕与双棱镜的距离大于等于时.重叠区域为零.条纹总数为零 当屏与双棱镜相距为L时.重叠区域最大.条纹总数最多 相应的两束光的重叠区域为.其中的干涉条纹总数条. ④对切双透镜 如图2-1-6所示.过光心将透镜对切.拉开一小段距离.中间加挡光板(图a),或错开一段距离(图b),或两片切口各磨去一些再胶合(图c).置于透镜原主轴上的各点光源或平行于主光轴的平行光线.经过对切透镜折射后.在叠加区也可以发生干涉. (3)薄膜干涉 当透明薄膜的厚度与光波波长可以相比时.入射薄膜表面的光线薄满前后两个表面反射的光线发生干涉. ①等倾干涉条纹 如图2-1-7所示.光线a入射到厚度为h.折射率为的薄膜的上表面.其反射光线是.折射光线是b,光线b在下表面发生反射和折射.反射线图是.折射线是,光线再经过上.下表面的反射和折射.依次得到..等光线.其中之一两束光叠加..两束光叠加都能产生干涉现象. a. b光线的光程差 = 如果i=0.则上式化简为. 由于光线在界面上发生反射时可能出现“半波损失 .因此可能还必须有“附加光程差 .是否需要增加此项.应当根据界面两侧的介质的折射率来决定. 当时.反射线.都是从光密介质到光疏介质.没有“半波损失 .对于..不需增加,但反射线是从光疏介质到光密介质.有“半波损失 .因此对于..需要增加.当时.反射线.都有“半波损失 .对于.仍然不需要增加,而反射线没有“半波损失 .对于.仍然必须增加.同理.当或时.对于.需要增加,对于.不需要增加. 在发生薄膜干涉时.如果总光程等于波长的整数倍时.增强干涉,如果总光程差等于半波长的奇数倍时.削弱干涉. 入射角越小.光程差越小.干涉级也越低.在等倾环纹中.半径越大的圆环对应的也越大.所以中心处的干涉级最高.越向外的圆环纹干涉级越低.此外.从中央外各相邻明或相邻暗环间的距离也不相同.中央的环纹间的距离较大.环纹较稀疏.越向外.环纹间的距离越小.环纹越密集. ②等厚干涉条纹 当一束平行光入射到厚度不均匀的透明介质薄膜上.在薄膜表面上也可以产生干涉现象.由于薄膜上下表面的不平行.从上表面反射的光线和从下面表反射并透出上表面的光线也不平行.如图2-1-8所示.两光线和的光程差的精确计算比较困难.但在膜很薄的情况下.A点和B点距离很近.因而可认为AC近似等于BC.并在这一区域的薄膜的厚度可看作相等设为h.其光程差近似为 当i保持不变时.光程差仅与膜的厚度有关.凡厚度相同的地方.光程差相同.从而对应同一条干涉条纹.将此类干涉条纹称为等厚干涉条纹. 当i很小时.光程差公式可简化为. ③劈尖膜 如图2-1-9所示.两块平面玻璃片.一端互相叠合.另一端夹一薄纸片(为了便于说明问题和易于作图.图中纸片的厚度特别予以放大).这时.在两玻璃片之间形成的空气薄膜称为空气劈尖.两玻璃片的交线称为棱边.在平行于棱边的线上.劈尖的厚道度是相等的. 当平行单色光垂直()入射于这样的两玻璃片时.在空气劈尖()的上下两表面所引起的反射光线将形成相干光.如图1-2-9所示.劈尖在C点处的厚度为h.在劈尖上下表面反射的两光线之间的光程差是.由于从空气劈尖的上表面和从空气劈尖的下表面反射的情况不同.所以在式中仍有附加的半波长光程差.由此 --明纹 --暗纹 干涉条纹为平行于劈尖棱边的直线条纹.每一明.暗条纹都与一定的k做相当.也就是与劈尖的一定厚度h相当. 任何两个相邻的明纹或暗纹之间的距离由下式决定: 式中为劈尖的夹角.显然.干涉条纹是等间距的.而且θ愈小.干涉条纹愈疏,θ愈大.干涉条纹愈密.如果劈尖的夹角θ相当大.干涉条纹就将密得无法分开.因此.干涉条纹只能在很尖的劈尖上看到. ④牛顿环 在一块光平的玻璃片B上.放曲率半径R很大的平凸透镜A.在A.B之间形成一劈尖形空气薄层.当平行光束垂直地射向平凸透镜时.可以观察到在透镜表面出现一组干涉条纹.这些干涉条纹是以接触点O为中心的同心圆环.称为牛顿环. 牛顿环是由透镜下表面反射的光和平面玻璃上表面反射的光发生干涉而形成的.这也是一种等厚条纹.明暗条纹处所对应的空气层厚度h应该满足: 从图2-1-10中的直角三角形得 因R»h.所以<<2Rh.得 上式说明h与r的平方成正比.所以离开中心愈远.光程差增加愈快.所看到的牛顿环也变得愈来愈密.由以上两式.可求得在反射光中的明环和暗环的半径分别为: 随着级数k的增大.干涉条纹变密.对于第k级和第k+m级的暗环 由此得透镜的且率半径 牛顿环中心处相应的空气层厚度h=0.而实验观察到是一暗斑.这是因为光疏介质到光密介质界面反射时有相位突变的缘故. 例1 在杨氏双缝干涉的实验装置中.缝上盖厚度为h.折射率为n的透明介质.问原来的零级明条纹移向何处?若观察到零级明条纹移到原来第k明条纹处.求该透明介质的厚度h.设入射光的波长为λ. 解:设从.到屏上P点的距离分别为..则到P点的光程差为 当时.的应零级条纹的位置应满足 原来两光路中没有介质时.零级条纹的位置满足.与有介质时相比 .可见零级明条纹应该向着盖介质的小孔一侧偏移. 原来没有透明介质时.第k级明条纹满足 当有介质时.零级明条纹移到原来的第k级明条纹位置.则必同时满足 和 从而 显然.k应为负整数. 例2 菲涅耳双面镜.如图2-1-12所示.平面镜和之间的夹角θ很小.两镜面的交线O与纸面垂直.S为光阑上的细缝.用强烈的单色光源来照明.使S成为线状的单色光源.S与O相距为r.A为一挡光板.防止光源所发的光没有经过反射而直接照射光屏P. (1)若图中∠.为在P上观察干涉条纹.光屏P与平面镜的夹角最好为多少? (2)设P与的夹角取(1)中所得的最佳值时.光屏与O相距为L.此时在P上观察到间距均匀的干涉条纹.求条纹间距△x. (3)如果以激光器作为光源.(2)的结果又如何? 解:(1)如图2-1-13.S通过.两平面镜分别成像和.在光屏P上看来.和则相当于两个相干光源.故在光屏P上会出现干涉现象.为在P上观察干涉条纹.光屏P的最好取向是使和与它等距离.即P与的连线平行. 图2-1-13图中和S关于平面镜对称.和S关于平面镜对称.所以.O为顶角为2θ腰长为r的等腰三角形.故光屏P的最佳取向是P的法线(通过O点)与平面镜的夹角等于.或光屏P与平面镜的夹角为90°-. (2)由图可看出.和之间的距离为.和到光屏P的距离为 .由此.屏上的干涉条纹间距为 (3)如果以徼光器作为光源.由于激光近于平行.即相当S位于无穷远处.上式简化为 若用两相干光束的夹角表示.上式可写成 例3 如图2-1-14所示的洛埃镜镜长l=7.5cm.点光源S到镜面的距离d=0.15mm.到镜面左端的距离b=4.5cm.光屏M垂直于平面镜且与点光源S相距L=1.2m.如果光源发出长的单色光.求: (1)在光屏上什么范围内有干涉的条纹? (2)相邻的明条纹之间距离多大? (3)在该范围内第一条暗条纹位于何处? 分析:洛埃镜是一个类似双缝干涉的装置.分析它的干涉现象.主要是找出点光源S和它在平面镜中的像.这两个就是相干光源.然后就可利用杨氏双缝干涉的结论来求解.但注意在计算光程差时.应考虑光线从光疏媒质入射到光密媒质时.反射光与入射光相位差180..即发生“半波损失 . 解:(1)如图2-1-14所示.S点光源发出的光一部分直接射到光屏上.另一部分经平面镜反射后再射到光屏.这部分的光线好像从像点发出.因为到达光屏这两部分都是由S点光源发出的.所以是相干光源.这两部分光束在光屏中的相交范围AB就是干涉条纹的范围.由图中的几何关系可以得到: ` ① ② 由①.②两式解得 由图中可知 由③.④两式可知在距离光屏与平面镜延长线交点C相距1.35-3.85cm之间出现干涉条纹. (2)相邻干涉条纹的距离为 (3)由于从平面镜反射的光线出现半波损失.暗条纹所在位置S和的光程差应当满足 即 ⑤ 又因为条纹必须出现在干涉区.从①解可知.第一条暗纹还应当满足 ⑥ 由⑤.⑥式解得 即在距离C点1.44cm处出现第一条暗条纹. 点评:这是一个光的干涉问题.它利用平面镜成点光源的像S`.形成有两个相干点光源S和.在光屏上出现干涉条纹.但需要注意光线由光疏媒质入射到光密媒质时会发生半波损失现象. 例4 一圆锥透镜如图图2-1-15所示.S.为锥面.M为底面,通过锥顶A垂直于底面的直线为光轴.平行光垂直入射于底面.现在把一垂直于光轴的平面屏P从透镜顶点A向右方移动.不计光的干涉与衍射. 查看更多

 

题目列表(包括答案和解析)

如图所示,是光的双缝干涉的示意图,下列说法正确的是

A.单缝S的作用是为了增加光的强度

B.双缝S1、S2的作用是为了产生两个频率相同的线状光源

C.当S1、S2发出的两列光的路程差为1.5λ时,产生第二暗纹(λ为光的波长)

D.当S1、S2发出的两列光的路程差为2λ时,产生第二明纹(λ为光的波长)

查看答案和解析>>

如图7是单色光的双缝干涉的示意图,其中S为单缝、 S1、S2为双缝,且三条缝互相平行,缝S到S1、S2的距离相等,下列说法中正确的是:


  1. A.
    单缝S的作用是为了增加光的强度
  2. B.
    双缝S1、S2的作用是为了获得同频率的两束相干光
  3. C.
    当S1、S2发出两列光波到P点的路程差为光的波长1.5倍时,产生第二条亮条纹
  4. D.
    当S1、S2发出的两列光波到P点的路程差为一个波长时,产生中央亮条纹

查看答案和解析>>

如图所示是光的双缝干涉的示意图,下列说法中正确的是


  1. A.
    单缝S的作用是为了增加光的强度.
  2. B.
    双缝S1、S2的作用是为了产生两个频率相同的线状光源.
  3. C.
    当S1、S2发出两列光波到P点的路程差为光的波长λ的1.5倍时,产生第二条暗条纹.
  4. D.
    当S1、S2发出的两列光波到P点的路程差为长λ时,产生中央亮条纹.

查看答案和解析>>

(1)如图1所示,在“用双缝干涉测光的波长”实验中,光具座上放置的光学元件依次为①光源、②
滤光片
滤光片
、③
单缝
单缝
、④
双缝
双缝
、⑤遮光筒、⑥光屏.对于某种单色光,为增加相邻亮纹(暗纹)间的距离,可采取
减小双缝间距离
减小双缝间距离
增大双缝到屏的距离
增大双缝到屏的距离
的方法.
λ=
0.25×10-3×1.893×10-3
0.7
≈6.76×10-7

(2)将测量头的分划板中心刻线与某条亮纹中心对齐,将该亮纹定为第1条亮纹,此时手轮上的示数如图2所示.然后同方向转动测量头,使分划板中心刻线与第4条亮纹中心对齐,记下此时图3中手轮上的示数
7.868
7.868
mm,求得相邻亮纹的间距△x为
1.893
1.893
mm.
(3)已知已知单缝与双缝的距离L1=60mm,双缝与屏的距离L2=700mm,单缝宽d1=0.10mm,双缝间距d2为0.25mm,计算波长的公式λ=
d2
L2
△x
d2
L2
△x
,求得所测红光波长为
676
676
nm.(公式要求按题目所给具体符号填写,计算结果保留整数,1nm=10-9m)

查看答案和解析>>

如图是单色光的双缝干涉的示意图,其中S为单缝、S1、S2为双缝,且三条缝互相平行,缝S到S1、S2的距离相等,下列说法中正确的是:(  )

查看答案和解析>>


同步练习册答案