题目列表(包括答案和解析)
在菱形ABCD中,若AC=2,则=
A.2
B.-2
C.
D.与菱形的边长有关
π | 4 |
在以下关于向量的命题中,不正确的是
若向量=(1,2),向量=(-2,1),则⊥
△ABC中,有+=
△ABC中和的夹角为角A
已知四边形ABCD,则四边形ABCD是菱形的充要条件是=,且||=||
π | 3 |
选择题:
(1)
在四边形ABCD中,若,则四边形ABCD是[
]
A .矩形 |
B .菱形 |
C .正方形 |
D .平行四边形 |
(2)
已知向量,,,,若向量a与b共线,则[
]
A . |
B . |
C . |
D .或 |
(3)
已知a,b为两个单位向量,下列四个命题中正确的是[
]A
.a与b相等B
.如果a与b平行,那么a与b相等C
.a与b共线D
.如果a与b平行,那么a=b或a=-b(4)已知两个力,的夹角为,它们的合力大小为10N,合力与的夹角为,那么的大小为
[
]
A .N |
B .5N |
C .10N |
D .N |
(5)
已知向量a表示“向东航行3km”,b表示“向南航行3km”,则a+b表示[
]
A .向东南航行6km |
B .向东南航行km |
C .向东北航行km |
D .向东北航行6km |
(6)
河水的流速为2m/s,一艘小船想沿垂直于河岸方向以10m/s的速度驶向对岸,则小船的静水速度大小为[
]
A .10m/s |
B .m/s |
C .m/s |
D .12m/s |
一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.B 2.A 3.B 4.B 5.C 6.D 7.D 8.C 9.B 10.A 11.D 12.A
二、填空题(本大题共4小题,每小题4分,共16分)
13. 14. 15. 16.
三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.
17.解:(Ⅰ)
=…………………………………………………3分
函数的周期,
由题意可知………………………………………6分
(Ⅱ)由(Ⅰ)可知
而………………………………………8分
由余弦定理知
又,
…………………………………………………………………12分
18.证明:(Ⅰ)
面面
面…………………………………………………………………………4分
(Ⅱ)面面
平面平面…………………………………………8分
(Ⅲ)连接BE,易证明,由(2)知面
平面………………………………………………………………………12分
19.解:(Ⅰ)设抽到相邻两个月的数据为事件A.因为从6组数据中选取2组数据共有15种情况,每种情况都是等可能出现的.其中抽到相邻两个月的数据的情况有5种,所以
P(A)=………………………………………………………………………………4分
(Ⅱ)由数据求得 由公式求得
再由,得所以y关于x的线性回归方程为………8分
(Ⅲ)当时,
同样,当时,
所以,该小组所得线性回归方程是理想的………………………………………………12分
20.(Ⅰ)由题意得,解得………………………2分
所以令则
在上单调递减,在上单调递增,在上单调递减……6分
(Ⅱ)因存在使得不等式成立
故只需要的最大值即可
① 若,则当时,在单调递增
当时,
当时,不存在使得不等式成立…………………………9分
② 当时,随x的变化情况如下表:
x
+
0
-
ㄊ
ㄋ
当时,由得
综上得,即a的取值范围是…………………………………………………12分
解法二:根据题意,只需要不等式在上有解即可,即在上有解,即不等式在上有解即可……………………………9分
令,只需要,而
故,即a的取值范围是………………………………………………………12分
21.因 ①
时 ②
由①-②得………………………………4分
又得,故数列是首项为1,公比的等比数列
………………………………………………………………………6分
(Ⅱ)假设满足题设条件的实数k,则………8分
由题意知,对任意正整数n恒有又数列单调递增
所以,当时数列中的最小项为,则必有,则实数k最大值为1…………12分
22.解:(Ⅰ)由椭圆的方程知点
设F的坐标为
是⊙M的直径,
得椭圆的离心率…………………………………………6分
(Ⅱ)⊙M过点F,B,C三点,圆心M既在FC的垂直平分线上,也在BC的垂直平分线上,FC的垂直平分线方程为 ①
BC的中点为
BC的垂直平分线方程为 ②
由①②得,即
在直线上,
由得
椭圆的方程为…………………………………………………………14分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com