解.(Ⅰ)证明:令x=y=0.∴2f(0)=f(0).∴f(0)=0 令y=-x.则f(x)+f(-x)=f(0)=0 ∴f(x)+f(-x)=0 ∴f(-x)=-f(x) ∴f(x)为奇函数 (Ⅱ)解:f(x1)=f()=-1.f(xn+1)=f()=f()=f(xn)+f(xn)=2f(xn) ∴=2即{f(xn)}是以-1为首项.2为公比的等比数列 ∴f(xn)=-2n-1 (Ⅲ)解: 而 ∴ 查看更多

 

题目列表(包括答案和解析)

解:因为有负根,所以在y轴左侧有交点,因此

解:因为函数没有零点,所以方程无根,则函数y=x+|x-c|与y=2没有交点,由图可知c>2


 13.证明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)与已知条件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函数y=f(x)-1的零点

(2)因为f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,则f(-1)=f(1)与已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函数是奇函数

数字1,2,3,4恰好排成一排,如果数字i(i=1,2,3,4)恰好出现在第i个位置上则称有一个巧合,求巧合数的分布列。

查看答案和解析>>

把函数的图象按向量平移得到函数的图象. 

(1)求函数的解析式; (2)若,证明:.

【解析】本试题主要考查了函数 平抑变换和运用函数思想证明不等式。第一问中,利用设上任意一点为(x,y)则平移前对应点是(x+1,y-2)代入 ,便可以得到结论。第二问中,令,然后求导,利用最小值大于零得到。

(1)解:设上任意一点为(x,y)则平移前对应点是(x+1,y-2)代入 得y-2=ln(x+1)-2即y=ln(x+1),所以.……4分

(2) 证明:令,……6分

……8分

,∴,∴上单调递增.……10分

,即

 

查看答案和解析>>

(2013•成都二模)已知函数f(x)=x-
1
x
,g(x)=alnx
,其中x>0,a∈R,令函数h(x)=f(x)-g(x).
(Ⅰ)若函数h(x)在(0,+∞)上单调递增,求a的取值范围;
(Ⅱ)当a取(I)中的最大值时,判断方程h(x)+h(2-x)=0在(0,1)上是否有解,并说明理由;
(Ⅲ)令函数F(x)=
1
x
+2lnx,证明不等式
2n
k=1
(-1)kF[1+(-
1
2
)
k
]<1(n∈N*)

查看答案和解析>>

已知函数f(x)=x,函数g(x)是反比例函数,且g(1)=2,令h(x)=f(x)-g(x).
(1)求函数g(x),并证明函数h(x)在(0,+∞)上是单调增函数;
(2)解h(x)>1.

查看答案和解析>>

已知函数的最小值为0,其中

(Ⅰ)求的值;

(Ⅱ)若对任意的成立,求实数的最小值;

(Ⅲ)证明).

【解析】(1)解: 的定义域为

,得

当x变化时,的变化情况如下表:

x

-

0

+

极小值

因此,处取得最小值,故由题意,所以

(2)解:当时,取,有,故时不合题意.当时,令,即

,得

①当时,上恒成立。因此上单调递减.从而对于任意的,总有,即上恒成立,故符合题意.

②当时,,对于,故上单调递增.因此当取时,,即不成立.

不合题意.

综上,k的最小值为.

(3)证明:当n=1时,不等式左边==右边,所以不等式成立.

时,

                      

                      

在(2)中取,得

从而

所以有

     

     

     

     

      

综上,

 

查看答案和解析>>


同步练习册答案