1.若关于x的方程x2+ax+a2-1=0有一正根和一负根.则a的取值范围为 . 解析:令f(x)=x2+ax+a2-1.由题意得f(0)<0.即a2-1<0⇒-1<a<1. 答案: 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=ln(ax)+x2-ax(a为常数,a>0)

(Ⅰ)当a=1时,求函数f(x)在x=1处的切线方程;

(Ⅱ)当y=f(x)在x=处取得极值时,若关于x的方程f(x)-b=0在[0,2]上恰有两个不相等的实数根,求实数的取值范围;

(Ⅲ)若对任意的a∈(1,2),总存在x0∈[,1],使不等式f(x0)>m(a2+2a-3)成立,求实数m的取值范围.

查看答案和解析>>

有下列命题:

①已知ab为实数,若a24b0,则x2axb0有非空实数解集.

②当2m10时,如果0,那么m>-4

③若ab是整数,则关于x的方程x2axb0有两整数根.

④若ab都不是整数,则方程x2axb0无两整数根.

⑤当2m10时,如果m≤-4,则0

⑥已知ab为实数,若x2axb0有非空实数解,则a24b0

⑦若方程x2axb0没有两整数根,则a不是整数或b不是整数.

⑧已知ab为实数,若a24b0,则关于x的不等式x2axb0的解集为空集.

⑨当2m10时,如果m>-4,则0

用序号表示上述命题间的关系(例(1)与(9)互为逆否命题):其中(1___________是互为逆命题;(2___________互为否命题;(3___________互为逆否命题

查看答案和解析>>

有下列命题:

①已知ab为实数,若a24b0,则x2axb0有非空实数解集.

②当2m10时,如果0,那么m>-4

③若ab是整数,则关于x的方程x2axb0有两整数根.

④若ab都不是整数,则方程x2axb0无两整数根.

⑤当2m10时,如果m≤-4,则0

⑥已知ab为实数,若x2axb0有非空实数解,则a24b0

⑦若方程x2axb0没有两整数根,则a不是整数或b不是整数.

⑧已知ab为实数,若a24b0,则关于x的不等式x2ax+b0的解集为空集.

⑨当2m10时,如果m>-4,则0

用序号表示上述命题间的关系(例(1)与(9)互为逆否命题):其中(1___________是互为逆命题;(2___________互为否命题;(3___________互为逆否命题

查看答案和解析>>


同步练习册答案