题目列表(包括答案和解析)
(本小题满分13分)
如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的
左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭
圆的焦点,设为该双曲线上异于顶点的任一点,直线和与椭圆的交点
分别 为和
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线、的斜率分别为、,证明;
(Ⅲ)是否存在常数,使得恒成立?
若存在,求的值;若不存在,请说明理由.
(本小题满分13分)
如图,椭圆的中心在原点,焦点在轴上,分别是椭圆的左、右焦点,是椭圆短轴的一个端点,过的直线与椭圆交于两点,的面积为,的周长为.(Ⅰ)求椭圆的方程;(Ⅱ)设点的坐标为,是否存在椭圆上的点及以为圆心的一个圆,使得该圆与直线都相切,如存在,求出点坐标及圆的方程,如不存在,请说明理由.
(2012年高考福建卷理科19)(本小题满分13分)
如图,椭圆的左焦点为,右焦点为,离心率。过的直线交椭圆于两点,且的周长为8。
(Ⅰ)求椭圆的方程。
(Ⅱ)设动直线与椭圆有且只有一个公共点,且与直线相交于点。试探究:
在坐标平面内是否存在定点,使得以为直径的圆恒过点?若存在,求出点的坐标;若不存在,说明理由。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com