2.已知抛物线y2=-x与直线l:y=k(x+1)相交于A.B两点. (1)求证:OA⊥OB,(2)当△AOB的面积等于时.求k的值. 解答:(1)证明:由y2=-x.y=k(x+1)得ky2+y-k=0. 设A(x1.y1).B(x2.y2).则 因此x1x2+y1y2=y·y·y1y2=0.所以OA·OB=0.OA⊥OB. (2)由|OA||OB|= .|OA|2|OB|2=40. (y+y)(y+y)=40.化简得y+y=38. 由(y1+y2)2-2y1y2=38.=36.解得k=±. 查看更多

 

题目列表(包括答案和解析)

已知抛物线y2=-16x的焦点为F1,准线与x轴的交点为F2,在直线l:x+y-8=0上找一点M,使|MF1|+|MF2|的值最小,并求这个最小值;(2)求以F1,F2为焦点,经过点M且长轴最短的椭圆方程.

查看答案和解析>>

如图,已知圆O:x2+y2=4与y轴正半轴交于点P,A(-1,0),B(1,0),直线l与圆O切于点S(l不垂直于x轴),抛物线过A、B两点且以l为准线.

(Ⅰ)当点S在圆周上运动时,求证:抛物线的焦点Q始终在某一椭圆C上,并求出该椭圆C的方程;

(Ⅱ)设M、N是(Ⅰ)中椭圆C上除短轴端点外的不同两点,且,问:△MON的面积是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.

查看答案和解析>>

已知椭圆=1(a>b>0)的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线x-y+b=0是抛物线y2=4x的一条切线.

(Ⅰ)求椭圆的方程;

(Ⅱ)过点S(0,-)的动直线L交椭圆C于A、B两点.问:是否存在一个定点T,使得以AB为直径的圆恒过点T?若存在,求点T坐标;若不存在,说明理由.

查看答案和解析>>

已知椭圆=1(a>b>0)的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线x-y+b=0是抛物线y2=4x的一条切线.

(Ⅰ)求椭圆的方程;

(Ⅱ)过点S(0,-)的动直线L交椭圆C于A、B两点.问:是否存在一个定点T,使得以AB为直径的圆恒过点T?若存在,求点T坐标;若不存在,说明理由.

查看答案和解析>>

(本小题满分12分)

已知直线l1:4x:-3y+6=0和直线l2:x=-,.若拋物线C:y2=2px上的点到直线l1和直线l2的距离之和的最小值为2.

(I )求抛物线C的方程;

(II)直线l过抛物线C的焦点F与抛物线交于A,B两点,且AA1,BB1都垂直于直线l2,垂足为A1,B1,直线l2与y轴的交点为Q,求证:为定值。

 

查看答案和解析>>


同步练习册答案