13.连续两次骰子得到点数分别为和.记向量.的夹角为.则的概率为 . 查看更多

 

题目列表(包括答案和解析)

(12分)连续抛两次质地均匀的骰子得到的点数分别为,将作为Q点的横、纵坐标,

(1)记向量的夹角为,求的概率;

(2)求点Q落在区域内的概率.

 

查看答案和解析>>

(12分)连续抛两次质地均匀的骰子得到的点数分别为,将作为Q点的横、纵坐标,
(1)记向量的夹角为,求的概率;
(2)求点Q落在区域内的概率.

查看答案和解析>>

(12分)连续抛两次质地均匀的骰子得到的点数分别为,将作为Q点的横、纵坐标,
(1)记向量的夹角为,求的概率;
(2)求点Q落在区域内的概率.

查看答案和解析>>

设函数.

(1)、当,解不等式          (6分)

(2)、若连续掷两次骰子(骰子六个面上分别标以数字1,2,3,4,5,6)得到的点数分别作为,求恒成立的概率;        (8分)

查看答案和解析>>

(文)设函数数学公式
(1)当a=2,解不等式f(x)>9
(2)若连续掷两次骰子(骰子六个面上分别标以数字1,2,3,4,5,6)得到的点数分别作为a和b,求f(x)>b2恒成立的概率.

查看答案和解析>>

一.选择题 (本大题共10小题,每题5分,共50分)

1.C;    2.D;    3,A;    4.B;     5.B;

6.A;    7.B;    8.D;    9.B;     10.D;

二.填空题 (本大题共7小题,每题4分,共28分)

11.;  12.;   14.;  15.;  16.;  17.

三.解答题 (本大题共5小题,第18―20题各14分,第21、22题各15分,共72分)

18.解:(1)因为,所以,…………3分

    得

    所以…………………………………3分

(2)由,…………………………………2分

    ……………………2分

    ………………………………4分

19.解:(1)…………………2分

      当时,…………………2分

     ∴,即

    ∴是公比为3的等比数列…………………2分

(2)由(1)得:…………………2分

的公差为), ∵,∴………………2分

依题意有

,得,或(舍去)………………2分

………………2分

 

20.解(1)

由三视图知:侧棱

………………2分

,又,∴   ①………………2分

为正方形,∴,又

 ②………………2分

由①②知平面………………2分

(2)取的中点,连结,由题意知,∴

由三视图知:侧棱,∴平面平面

平面

就是与面所成角的平面角………………3分

。故,又正方形

中,∴,∴

………………3分

综上知与面所成角的大小的余弦值为

21.解(1)当时,,………………1分

………………2分

∴当,此时为减函数,………………1分

,些时为增函数………………1分

时,求函数的最大值………………2分

(2)………………1分

①当时,在

上为减函数,∴,则

………………3分

②当时,

上为减函数,则

上为增函数,在上为减函数,在上为增函数,则

,∴………………3分

综上可知,的取值范围为………………1分

 

22.(1)记A点到准线距离为,直线的倾斜角为

由抛物线的定义知,………………………2分

………………………3分

(2)设

,………………………2分

,同理……………………2分

,…………………………2分

即:

    ∴,…………………………2分

,得

得,

的取值范围为…………………………2分

 

命题人

吕峰波(嘉兴)  王书朝(嘉善)  王云林(平湖)

胡水林(海盐)  顾贯石(海宁)  张晓东(桐乡)

     吴明华、张启源、徐连根、洗顺良、李富强、吴林华

 

 

 


同步练习册答案