题目列表(包括答案和解析)
(本题满分16分)已知二次函数f (x) = x2 ??ax + a (x∈R)同时满足:①不等式 f (x) ≤ 0的解集有且只有一个元素;②在定义域内存在0 < x1 < x2,使得不等式f (x1) > f (x2)成立.设数列{an}的前 n 项和Sn = f (n).(1)求函数f (x)的表达式;(2)求数列{an}的通项公式;(3)在各项均不为零的数列{cn}中,若ci·ci+1 < 0,则称ci,ci+1为这个数列{cn}一对变号项.令cn = 1 ?? (n为正整数),求数列{cn}的变号项的对数.
(本题满分15分)
已知定义在上的函数为常数,若为偶函数
(1)求的值;
(2)判断函数在内的单调性,并用单调性定义给予证明;
(3)求函数的值域.
(本题15分)已知函数图象的对称中心为,且的极小值为.
(1)求的解析式;
(2)设,若有三个零点,求实数的取值范围;
(3)是否存在实数,当时,使函数
在定义域[a,b] 上的值域恰为[a,b],若存在,求出k的范围;若不存在,说明理由.
(本题满分15分)
已知定义在上的函数为常数,若为偶函数
(1)求的值;
(2)判断函数在内的单调性,并用单调性定义给予证明;
(3)求函数的值域.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com