解:(Ⅰ)在中.由及余弦定理得-2分 而.则, -------4分 (Ⅱ)由及正弦定理得.----6分 同理 -------8分 ∴ --------10分 ∵∴. ∴即时.. -------12分 查看更多

 

题目列表(包括答案和解析)

设点是抛物线的焦点,是抛物线上的个不同的点().

(1) 当时,试写出抛物线上的三个定点的坐标,从而使得

(2)当时,若

求证:

(3) 当时,某同学对(2)的逆命题,即:

“若,则.”

开展了研究并发现其为假命题.

请你就此从以下三个研究方向中任选一个开展研究:

① 试构造一个说明该逆命题确实是假命题的反例(本研究方向最高得4分);

② 对任意给定的大于3的正整数,试构造该假命题反例的一般形式,并说明你的理由(本研究方向最高得8分);

③ 如果补充一个条件后能使该逆命题为真,请写出你认为需要补充的一个条件,并说明加上该条件后,能使该逆命题为真命题的理由(本研究方向最高得10分).

【评分说明】本小题若填空不止一个研究方向,则以实得分最高的一个研究方向的得分作为本小题的最终得分.

【解析】第一问利用抛物线的焦点为,设

分别过作抛物线的准线的垂线,垂足分别为.

由抛物线定义得到

第二问设,分别过作抛物线的准线垂线,垂足分别为.

由抛物线定义得

第三问中①取时,抛物线的焦点为

分别过作抛物线的准线垂线,垂足分别为.由抛物线定义得

,不妨取

解:(1)抛物线的焦点为,设

分别过作抛物线的准线的垂线,垂足分别为.由抛物线定义得

 

因为,所以

故可取满足条件.

(2)设,分别过作抛物线的准线垂线,垂足分别为.

由抛物线定义得

   又因为

所以.

(3) ①取时,抛物线的焦点为

分别过作抛物线的准线垂线,垂足分别为.由抛物线定义得

,不妨取

.

是一个当时,该逆命题的一个反例.(反例不唯一)

② 设,分别过

抛物线的准线的垂线,垂足分别为

及抛物线的定义得

,即.

因为上述表达式与点的纵坐标无关,所以只要将这点都取在轴的上方,则它们的纵坐标都大于零,则

,所以.

(说明:本质上只需构造满足条件且的一组个不同的点,均为反例.)

③ 补充条件1:“点的纵坐标)满足 ”,即:

“当时,若,且点的纵坐标)满足,则”.此命题为真.事实上,设

分别过作抛物线准线的垂线,垂足分别为,由

及抛物线的定义得,即,则

又由,所以,故命题为真.

补充条件2:“点与点为偶数,关于轴对称”,即:

“当时,若,且点与点为偶数,关于轴对称,则”.此命题为真.(证略)

 

查看答案和解析>>

16.(2)解(1)当a=1,b=-2时,g(x)=f(x)-2,把f(x)图象向下平移两个单位就可得到g(x)图象,

这时函数g(x)只有两个零点,所以(1)不对

(2)若a=-1,-2<b<0,则把函数f(x)作关于x轴对称图象,然后向下平移不超过2个单位就可得到g(x)图象,这时g(x)有超过2的零点

(3)当a<0时, y=af(x)根据定义可断定是奇函数,如果b≠0,把奇函数y=af(x)图象再向上(或向下)平移后才是y=g(x)=af(x)+b的图象,那么肯定不会再关于原点对称了,肯定不是奇函数;当b=0时才是奇函数,所以(3)不对。所以正确的只有(2)

为了考察高中生学习语文与数学之间的关系,在某中学学生中随机地抽取了610名学生得到如下列表:

 语文

数学

及格

不及格

总计 

及格

310

142

452

不及格

94

64

158

总计

404

206

610

 由表中数据计算及的观测值问在多大程度上可以认为高中生的语文与数学成绩之间有关系?为什么?

查看答案和解析>>

在△ABC中,为三个内角为三条边,

(I)判断△ABC的形状;

(II)若,求的取值范围.

【解析】本题主要考查正余弦定理及向量运算

第一问利用正弦定理可知,边化为角得到

所以得到B=2C,然后利用内角和定理得到三角形的形状。

第二问中,

得到。

(1)解:由及正弦定理有:

∴B=2C,或B+2C,若B=2C,且,∴;∴B+2C,则A=C,∴是等腰三角形。

(2)

 

查看答案和解析>>

在△ABC中,内角A、B、C所对边的边长分别是a、b、c,已知c=2,C=.

(Ⅰ)若△ABC的面积等于,求a、b;

(Ⅱ)若,求△ABC的面积.

【解析】第一问中利用余弦定理及已知条件得又因为△ABC的面积等于,所以,得联立方程,解方程组得.

第二问中。由于即为即.

时, , ,   所以时,得,由正弦定理得,联立方程组,解得,得到

解:(Ⅰ) (Ⅰ)由余弦定理及已知条件得,………1分

又因为△ABC的面积等于,所以,得,………1分

联立方程,解方程组得.                 ……………2分

(Ⅱ)由题意得

.             …………2分

时, , ,           ……1分

所以        ………………1分

时,得,由正弦定理得,联立方程组

,解得,;   所以

 

查看答案和解析>>

仔细阅读下面问题的解法:
设A=[0,1],若不等式21-x-a>0在A上有解,求实数a的取值范围.
解:由已知可得  a<21-x
令f(x)=21-x,不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值
又f(x)在[0,1]上单调递减,f(x)max=f(0)=2
∴a<2即为所求.
学习以上问题的解法,解决下面的问题:
(1)已知函数f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函数及反函数的定义域A;
(2)对于(1)中的A,设g(x)=
10-x
10+x
x∈A,试判断g(x)的单调性;(不证)
(3)又若B={x|
10-x
10+x
>2x+a-5},若A∩B≠Φ,求实数a的取值范围.

查看答案和解析>>


同步练习册答案