解:,又.. --..1分 又.∴. --------..2分 ∴. --------..4分 ∴.又.∴. --------6分 ,又.. ---1分 又.∴. --------..2分 ∴. --------..4分 ∴.又.∴. --------6分 又,又.. --..1分 .∴B=. --------2分 ∵ ∴. .∴. --------6分 (Ⅱ)由易知.都是锐角.. .-8分 由正弦定理可知∴. --10分 ∴. ------.12分 查看更多

 

题目列表(包括答案和解析)

在四棱锥中,平面,底面为矩形,.

(Ⅰ)当时,求证:

(Ⅱ)若边上有且只有一个点,使得,求此时二面角的余弦值.

【解析】第一位女利用线面垂直的判定定理和性质定理得到。当a=1时,底面ABCD为正方形,

又因为,………………2分

,得证。

第二问,建立空间直角坐标系,则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

设BQ=m,则Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知时,存在点Q使得

当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得

由此知道a=2,  设平面POQ的法向量为

,所以    平面PAD的法向量

的大小与二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值为

解:(Ⅰ)当时,底面ABCD为正方形,

又因为,………………3分

(Ⅱ) 因为AB,AD,AP两两垂直,分别以它们所在直线为X轴、Y轴、Z轴建立坐标系,如图所示,

则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

设BQ=m,则Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知时,存在点Q使得

当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得由此知道a=2,

设平面POQ的法向量为

,所以    平面PAD的法向量

的大小与二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值为

 

查看答案和解析>>

将正整数12分解成两个整数的乘积有:1×12,2×6,3×4三种,又3×4是这三种分解中两数的差最小的,我们称3×4为12的最佳分解. 当p×q(p≤q)是正整数n的最佳分解时,我们规定函数f(n)=
p
q
.如f(12)=
3
4
.以下有关f(n)=
p
q
的说法中,正确的个数为(  )
①f(4)=1;
f(24)=
3
8

f(27)=
1
3

④若n是一个质数,则f(n)=
1
n

⑤若n是一个完全平方数,则f(n)=1.
A、1B、2C、3D、4

查看答案和解析>>

将正整数12分解成两个整数的乘积有:1×12,2×6,3×4三种,又3×4是这三种分解中两数的差最小的,我们称3×4为12的最佳分解. 当p×q(p≤q)是正整数n的最佳分解时,我们规定函数f(n)=
p
q
.如f(12)=
3
4
.以下有关f(n)=
p
q
的说法中,正确的个数为(  )
①f(4)=1;
f(24)=
3
8

f(27)=
1
3

④若n是一个质数,则f(n)=
1
n

⑤若n是一个完全平方数,则f(n)=1.
A.1B.2C.3D.4

查看答案和解析>>

将正整数12分解成两个整数的乘积有:1×12,2×6,3×4三种,又3×4是这三种分解中两数的差最小的,我们称3×4为12的最佳分解. 当p×q(p≤q)是正整数n的最佳分解时,我们规定函数f(n)=
p
q
.如f(12)=
3
4
.以下有关f(n)=
p
q
的说法中,正确的个数为(  )
①f(4)=1;
f(24)=
3
8

f(27)=
1
3

④若n是一个质数,则f(n)=
1
n

⑤若n是一个完全平方数,则f(n)=1.
A.1B.2C.3D.4

查看答案和解析>>

将正整数12分解成两个整数的乘积有:1×12,2×6,3×4三种,又3×4是这三种分解中两数的差最小的,我们称3×4为12的最佳分解. 当p×q(p≤q)是正整数n的最佳分解时,我们规定函数.如.以下有关的说法中,正确的个数为( )
①f(4)=1;


④若n是一个质数,则
⑤若n是一个完全平方数,则f(n)=1.
A.1
B.2
C.3
D.4

查看答案和解析>>


同步练习册答案