4.平面向量的坐标运算 若.. 则.. 若..则 查看更多

 

题目列表(包括答案和解析)

(中线性运算)在平面直角坐标系中,若O为坐标原点,则A、B、C三点在同一直线上的充要条件为存在唯一的实数λ,使得
OC
=λ•
OA
+(1-λ)•
OB
成立,此时称实数λ为“向量
OC
关于
OA
OB
的终点共线分解系数”.若已知P1(3,1)、P2(-1,3),且向量
OP3
与向量
a
=(1,1)垂直,则“向量
OP3
关于
OP1
OP2
的终点共线分解系数”为(  )
A、-3B、3C、1D、-1

查看答案和解析>>

(中线性运算)在平面直角坐标系中,若O为坐标原点,则A、B、C三点在同一直线上的充要条件为存在唯一的实数λ,使得
OC
=λ•
OA
+(1-λ)•
OB
成立,此时称实数λ为“向量
OC
关于
OA
OB
的终点共线分解系数”.若已知P1(3,1)、P2(-1,3),且向量
OP3
与向量a=(1,1)垂直,则“向量
OP3
关于
OP1
OP2
的终点共线分解系数”为(  )
A.-3B.3C.1D.-1

查看答案和解析>>

(中线性运算)在平面直角坐标系中,若O为坐标原点,则A、B、C三点在同一直线上的充要条件为存在唯一的实数λ,使得成立,此时称实数λ为“向量关于的终点共线分解系数”.若已知P1(3,1)、P2(-1,3),且向量与向量a=(1,1)垂直,则“向量关于的终点共线分解系数”为( )
A.-3
B.3
C.1
D.-1

查看答案和解析>>

(中线性运算)在平面直角坐标系中,若O为坐标原点,则A、B、C三点在同一直线上的充要条件为存在唯一的实数λ,使得成立,此时称实数λ为“向量关于的终点共线分解系数”.若已知P1(3,1)、P2(-1,3),且向量与向量a=(1,1)垂直,则“向量关于的终点共线分解系数”为( )
A.-3
B.3
C.1
D.-1

查看答案和解析>>

(中线性运算)在平面直角坐标系中,若O为坐标原点,则A、B、C三点在同一直线上的充要条件为存在唯一的实数λ,使得数学公式成立,此时称实数λ为“向量数学公式关于数学公式数学公式的终点共线分解系数”.若已知P1(3,1)、P2(-1,3),且向量数学公式与向量a=(1,1)垂直,则“向量数学公式关于数学公式数学公式的终点共线分解系数”为


  1. A.
    -3
  2. B.
    3
  3. C.
    1
  4. D.
    -1

查看答案和解析>>


同步练习册答案