10.已知.将y用x的代数式表示为y= ▲ . 查看更多

 

题目列表(包括答案和解析)

已知:抛物线y=x2-(2m+4)x+m2-10与x轴交于A、B两点,C是抛物线的顶点.

(1)用配方法求顶点C的坐标(用含m的代数式表示);

(2)“若AB的长为2,求抛物线的解析式.”解法的部分步骤如下,补全解题过程,并简述步骤①的解题依据,步骤②的解题方法.

  解:由(1)知,对称轴与x轴交于点D(  ,0).

  ∵抛物线的对称性及AB=2

  ∴AD=BD=|xA-xD|=

  ∵点A(xA,0)在抛物线y=(x-h)2+k上,

  ∴0=(xA-h)2+k.  ①

  ∵h=xC=xD,将|xA-xD|=代入上式,得到关于m的方程

  0=()2+(  )  ②

(3)将(2)中的条件“AB的长为2”改为“△ABC为等边三角形”,用类似的方法求出此抛物线的解析式.

查看答案和解析>>

已知抛物线y=x2-(2m+4)x+m2-10与x轴交于A、B两点,C是抛物线的顶点.

(1)用配方法求顶点C的坐标(用含有m的代数式表示);

(2)“若AB的长为2,求抛物线的解析式”的解法如下:

由(1)知,对称轴与x轴交于点D(________,0).

∵抛物线具有对称性,且AB=2

∴AD=DB=|xA-xD|=

∵A(xA,0)在抛物线y=(x-h)2+k上,

∴(xA-h)2+k=0.    ①

∵h=xC=xD

∴将|xA-xD|=代入①,得到关于m的方程0=()2+(________).  ②

补全解题过程,并简述步骤①的解题依据,步骤②的解题方法.

(3)将(2)中条件“AB的长为2”改为“△ABC为等边三角形”,用类似的方法求出抛物线的解析式.

查看答案和解析>>

已知抛物线y=x2-2xa(a<0)与y轴相交于点A,顶点为M.直线分别与x轴,y轴相交于B,C两点,并且与直线AM相交于点N.

(1)填空:试用含a的代数式分别表示点M与N的坐标,则M(  ,  ),N(  ,  );

(2)如下图,将△NAC沿y轴翻折,若点N的对应点恰好落在抛物线上,与x轴交于点D,连结CD,求a的值和四边形ADCN的面积;

(3)在抛物线y=x2-2xa(a<0)上是否存在一点P,使得以P,A,C,N为顶点的四边形是平行四边形?若存在,求出P点的坐标;若不存在,试说明理由.

查看答案和解析>>

如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以毎秒1个单位长的速度运动t秒(t>0),抛物线y=x2+bx+c经过点O和点P,已知矩形ABCD的三个顶点为A(1,0),B(1,-5),D(4,0).

(1)求c,b(用含t的代数式表示):

(2)当4<t<5时,设抛物线分别与线段AB,CD交于点M,N.

①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;

②求△MPN的面积S与t的函数关系式,并求t为何值时,S=

(3)在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围.

查看答案和解析>>

如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以毎秒1个单位长的速度运动t秒(t>0),抛物线y=x2+bx+c经过点O和点P,已知矩形ABCD的三个顶点为A(1,0),B(1,-5),D(4,0).

(1)求c,b(用含t的代数式表示):

(2)当4<t<5时,设抛物线分别与线段AB,CD交于点M,N.

①在点P的运动过程中,你认为cos∠AMP的大小是否会变化?若变化,说明理由;若不变,求出cos∠AMP的值;

②求△MPN的面积S与t的函数关系式,并求t为何值时,

(3)在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围是________.

查看答案和解析>>


同步练习册答案