(1)证明:. ∴.则-- --- 3分 又.则 ∴ 又 ∴ ---------- 6分 (2)在三角形ABE中过M点作MG∥AE交BE于G点,在三角形BEC中过G点作GN∥BC交EC于N点,连MN,则由比例关系易得CN=-- -8分 MG∥AE MG平面ADE, AE平面ADE, MG∥平面ADE--------10分 同理, GN∥平面ADE 平面MGN∥平面ADE -----12分 又MN平面MGN MN∥平面ADE N点为线段CE上靠近C点的一个三等分点 ----------------15分 查看更多

 

题目列表(包括答案和解析)

第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分.

如果存在常数使得数列满足:若是数列中的一项,则也是数列中的一项,称数列为“兑换数列”,常数是它的“兑换系数”.

(1)若数列:是“兑换系数”为的“兑换数列”,求的值;

(2)已知有穷等差数列的项数是,所有项之和是,求证:数列是“兑换数列”,并用表示它的“兑换系数”;

(3)对于一个不少于3项,且各项皆为正整数的递增数列,是否有可能它既是等比数列,又是“兑换数列”?给出你的结论并说明理由.

 

查看答案和解析>>

第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分.
如果存在常数使得数列满足:若是数列中的一项,则也是数列中的一项,称数列为“兑换数列”,常数是它的“兑换系数”.
(1)若数列:是“兑换系数”为的“兑换数列”,求的值;
(2)已知有穷等差数列的项数是,所有项之和是,求证:数列是“兑换数列”,并用表示它的“兑换系数”;
(3)对于一个不少于3项,且各项皆为正整数的递增数列,是否有可能它既是等比数列,又是“兑换数列”?给出你的结论并说明理由.

查看答案和解析>>

如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.

(1)   求证:A1C⊥平面BCDE;

(2)   若M是A1D的中点,求CM与平面A1BE所成角的大小;

(3)   线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由

【解析】(1)∵DE∥BC∴又∵

(2)如图,以C为坐标原点,建立空间直角坐标系C-xyz,

设平面的法向量为,则,又,所以,令,则,所以

设CM与平面所成角为。因为

所以

所以CM与平面所成角为

 

查看答案和解析>>


同步练习册答案