1. 2.(1.0) 3.-128 4. 5. 6. 查看更多

 

题目列表(包括答案和解析)

假设一个人从出生到死亡,在每个生日都测量身高,并作出这些数据散点图,则这些点将不会落在一条直线上,但在一段时间内的增长数据有时可以用线性回归来分析.下表是一位母亲给儿子作的成长记录:

年龄/周岁

3

4

5

6

7

8

9

身高/cm

90.8

97.6

104.2

110.9

115.6

122.0

128.5

年龄/周岁

10

11

12

13

14

15

16

身高/cm

134.2

140.8

147.6

154.2

160.9

167.6

173.0

(1)作出这些数据的散点图;

(2)求出这些数据的回归方程;

(3)对于这个例子,你如何解释回归系数的含义?

(4)用下一年的身高减去当年的身高,计算他每年身高的增长数,并计算他从3~16岁身高的年均增长数.

(5)解释一下回归系数与每年平均增长的身高之间的联系.

查看答案和解析>>

将下列指数式写成对数式:?

(1)27=128,  (2)54=625,  (3)=73?

(4)0.000001=106,  (5)()bm,?

(6)1006990=5

查看答案和解析>>

将下列指数式写成对数式:?

(1)27=128,  (2)54=625,  (3)=73?

(4)0.000001=106,  (5)()bm,?

(6)1006990=5

查看答案和解析>>

想象一下一个人从出生到死亡,在每个生日都测量身高,并作出这些数据的散点图,这些点将不会落在一条直线上,但在一段时间内的增长数据有时可以用线性回归来分析,下表是一位母亲给儿子做的成长记录:

年龄/周岁
3
4
5
6
7
8
9
身高/cm
91.8
97.6
104.2
110.9
115.6
122.0
128.5
 
年龄/周岁
10
11
12
13
14
15
16
身高/cm
134.2
140.8
147.6
154.2
160.9
167.5
173.0
(1)年龄(解释变量)和身高(预报变量)之间具有怎样的相关关系?
(2)如果年龄相差5岁,则身高有多大差异(3~16岁之间)?
(3)如果身高相差20 cm,其年龄相差多少(3~16岁之间)?
(4)计算残差,说明该函数模型是否能够较好地反映年龄与身高的关系,说明理由.

查看答案和解析>>

想象一下一个人从出生到死亡,在每个生日都测量身高,并作出这些数据散点图,这些点将不会落在一条直线上.但在一段时间内的增长数据有时可以用线性回归来分析.下表是一位母亲给儿子作的成长记录:

年龄/周岁

3

4

5

6

身高/cm

90.8

97.6

104.2

110.9

年龄/周岁

7

8

9

10

身高/cm

115.6

122.0

128.5

134.2

年龄/周岁

11

12

13

14

身高/cm

140.8

147.6

154.2

160.9

年龄/周岁

15

16

   

身高/cm

167.6

173.0

   

(1)作出这些数据的散点图.

(2)求出这些数据的回归方程.

(3)对于这个例子,你如何解释斜率的含义?

(4)用下一年的身高减去当年的身高,计算每年身高的增长数,并计算从3到16岁身高的平均增长数.

(5)解释一下斜率与每年平均增长的身高之间的联系.

查看答案和解析>>


同步练习册答案