13. (1)证明:E.P分别为AC.A′C的中点. EP∥A′A.又A′A平面AA′B.EP平面AA′B ∴即EP∥平面A′FB ----------------5分 (2) 证明:∵BC⊥AC.EF⊥A′E.EF∥BC ∴BC⊥A′E.∴BC⊥平面A′EC BC平面A′BC ∴平面A′BC⊥平面A′EC ----------------9分 (3)证明:在△A′EC中.P为A′C的中点.∴EP⊥A′C. 在△A′AC中.EP∥A′A.∴A′A⊥A′C 由(2)知:BC⊥平面A′EC 又A′A平面A′EC ∴BC⊥AA′ ∴A′A⊥平面A′BC ----------------14分 查看更多

 

题目列表(包括答案和解析)

(本小题满分15分)在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题.求:

(1)第1次抽到理科题的概率;

(2)第1次和第2次都抽到理科题的概率;

(3)在第1次抽到理科题的条件下,第2次抽到文科题的概率

 

 

查看答案和解析>>

(本小题满分15分).

已知分别为椭圆

上、下焦点,其中也是抛物线的焦点,

在第二象限的交点,且

(Ⅰ)求椭圆的方程;

(Ⅱ)已知点P(1,3)和圆,过点P的动直线与圆相交于不同的两点A,B,在线段AB取一点Q,满足:)。求证:点Q总在某定直线上。

 

查看答案和解析>>

(本小题满分15分)

已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)若,试分别解答以下两小题.

(ⅰ)若不等式对任意的恒成立,求实数的取值范围;

(ⅱ)若是两个不相等的正数,且,求证:

 

查看答案和解析>>

(本小题满分15分)

如图已知,椭圆的左、右焦点分别为,过的直线与椭圆相交于A、B两点。

(Ⅰ)若,且,求椭圆的离心率;

(Ⅱ)若的最大值和最小值。

 

 

 

查看答案和解析>>

(本小题满分15分)若函数在定义域内存在区间,满足上的值域为,则称这样的函数为“优美函数”.

(Ⅰ)判断函数是否为“优美函数”?若是,求出;若不是,说明理由;

(Ⅱ)若函数为“优美函数”,求实数的取值范围.

 

查看答案和解析>>


同步练习册答案