20. 已知椭圆的右准线与轴相交于点.右焦点到上顶点的距离为.点是线段上的一个动点. (I)求椭圆的方程; (Ⅱ)是否存在过点且与轴不垂直的直线与椭圆交于.两点,使得,并说明理由. 查看更多

 

题目列表(包括答案和解析)

(本小题满分13分)

  如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的

  左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭

  圆的焦点,设为该双曲线上异于顶点的任一点,直线与椭圆的交点

  分别 为

   (Ⅰ)求椭圆和双曲线的标准方程; 

   (Ⅱ)设直线的斜率分别为,证明

   (Ⅲ)是否存在常数,使得恒成立?

      若存在,求的值;若不存在,请说明理由.

                                                             

查看答案和解析>>

(本小题满分13分)
已知椭圆上的一动点到右焦点的最短距离为,且右焦点到右准线的距离等于短半轴的长.
(Ⅰ) 求椭圆的方程;
(Ⅱ) 过点()的动直线交椭圆两点,试问:在坐标平面上是否存在一个定点,使得无论如何转动,以为直径的圆恒过定点?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

(本小题满分13分)已知椭圆的离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线相切,分别是椭圆的左右两个顶点, 为椭圆上的动点.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)若均不重合,设直线的斜率分别为,证明:为定值;

(Ⅲ)为过且垂直于轴的直线上的点,若,求点的轨迹方程,并说明轨迹是什么曲线.

 

查看答案和解析>>

(本小题满分13分)

已知椭圆C中心在原点,焦点在轴上,焦距为,短轴长为

    (Ⅰ)求椭圆C的标准方程;

(Ⅱ)若直线与椭圆交于不同的两点不是

椭圆的左、右顶点),且以为直径的圆经过椭圆的右顶点

求证:直线过定点,并求出定点的坐标.

查看答案和解析>>

(本小题满分13分)

已知椭圆上的一动点到右焦点的最短距离为,且右焦点到右准线的距离等于短半轴的长.

(Ⅰ) 求椭圆的方程;

(Ⅱ) 过点()的动直线交椭圆两点,试问:在坐标平面上是否存在一个定点,使得无论如何转动,以为直径的圆恒过定点?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案