如图所示.在长方体.ABCD-A1B1C1D1中.AB=2AD=AA1=2.E是AB的中点.F是A1C的中点 (1) 求证:EF∥平面AA1D1D (2) 求证:EF⊥平面A1CD (3) 求三棱锥B-A1DF的体积 查看更多

 

题目列表(包括答案和解析)

(本题满分14分)

如图,已知是棱长为的正方体,点上,点上,且

(1)求证:四点共面;(4分)

(2)若点上,,点上,,垂足为,求证:平面;(4分)

(3)用表示截面和侧面所成的锐二面角的大小,求.(4分

 

 

查看答案和解析>>

(本题满分14分)
如图,已知是棱长为的正方体,点上,点上,且
(1)求证:四点共面;(4分)
(2)若点上,,点上,,垂足为,求证:平面;(4分)
(3)用表示截面和侧面所成的锐二面角的大小,求.(4分

查看答案和解析>>

(本小题满分14分)设b>0,椭圆方程为,抛物线方程为.如图4所示,过点F(0,b+2)作x轴的平行线,与抛物线在

第一象限的交点为G.已知抛物线在点G的切线经

过椭圆的右焦点.

(1)求满足条件的椭圆方程和抛物线方程;

(2)设A,B分别是椭圆长轴的左、右端点,试探究在

抛物线上是否存在点P,使得△ABP为直角三角形?

若存在,请指出共有几个这样的点?并说明理由

(不必具体求出这些点的坐标).

查看答案和解析>>

(本小题满分14分)

,椭圆方程为,抛物线方程为.如图6所示,过点轴的平行线,与抛物线在第一象限的交点为,已知抛物线在点的切线经过椭圆的右焦点

(1)求满足条件的椭圆方程和抛物线方程;

(2)设分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).

查看答案和解析>>

(本小题满分14分)设,椭圆方程为,抛物线方程为.如图6所示,过点轴的平行线,与抛物线在第一象限的交点为,已知抛物线在点的切线经过椭圆的右焦点

(1)求满足条件的椭圆方程和抛物线方程;

(2)设分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).

查看答案和解析>>


同步练习册答案