(Ⅰ) 由题意知.直线的直角坐标方程为:. ∵曲线的直角坐标方程为:. ∴曲线的参数方程为:.--------5分 (Ⅱ) 设点P的坐标.则点P到直线的距离为: . ∴当sin(300-θ)=1时.点.此时.----10分 查看更多

 

题目列表(包括答案和解析)

已知曲线的参数方程是是参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线:的极坐标方程是=2,正方形ABCD的顶点都在上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).

(Ⅰ)求点A,B,C,D的直角坐标;

 (Ⅱ)设P为上任意一点,求的取值范围.

【命题意图】本题考查了参数方程与极坐标,是容易题型.

【解析】(Ⅰ)由已知可得

即A(1,),B(-,1),C(―1,―),D(,-1),

(Ⅱ)设,令=

==

,∴的取值范围是[32,52]

 

查看答案和解析>>

已知椭圆C1的中心在坐标原点,焦点在坐标轴上.
(1)若椭圆C1过点(
2
,0)和(0,2),求椭圆C1的标准方程;
(2)试判断命题“若椭圆C2:x2+y2=1(在椭圆C1内)任意一条切线都与椭圆C1交于两点,且这两点总与坐标原点构成直角三角形,则满足条件的椭圆C1恒过定点”的真假.若命题为真命题,求出定点坐标,若为假命题,说明理由.

查看答案和解析>>

已知椭圆C1的中心在坐标原点,焦点在坐标轴上.
(1)若椭圆C1过点(
2
,0)和(0,2),求椭圆C1的标准方程;
(2)试判断命题“若椭圆C2:x2+y2=1(在椭圆C1内)任意一条切线都与椭圆C1交于两点,且这两点总与坐标原点构成直角三角形,则满足条件的椭圆C1恒过定点”的真假.若命题为真命题,求出定点坐标,若为假命题,说明理由.

查看答案和解析>>

已知椭圆C1的中心在坐标原点,焦点在坐标轴上.
(1)若椭圆C1过点(,0)和(0,2),求椭圆C1的标准方程;
(2)试判断命题“若椭圆C2:x2+y2=1(在椭圆C1内)任意一条切线都与椭圆C1交于两点,且这两点总与坐标原点构成直角三角形,则满足条件的椭圆C1恒过定点”的真假.若命题为真命题,求出定点坐标,若为假命题,说明理由.

查看答案和解析>>

(本小题满分14分)
已知抛物线的焦点为上异于原点的任意一点,过点的直线于另一点,交轴的正半轴于点,且有.当点的横坐标为时,为正三角形.
(Ⅰ)求的方程;
(Ⅱ)若直线,且有且只有一个公共点
(ⅰ)证明直线过定点,并求出定点坐标;
(ⅱ)的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案