①若在点x0处连续.则 ②函数f(x)在点x0处有定义.则函数在x0处连续 ③函数f在某一点x=x0处连续.则在x=x0处连续, ④若f内连续.则在该区间内必能取得最大值和最小值.其中正确的有--( ) A.1个 B.2个 C.3个 D.4个 查看更多

 

题目列表(包括答案和解析)

证明:若函数f(x)在点x0处可导,则函数f(x)在点x0处连续.

查看答案和解析>>

证明:若函数f(x)在点x0处可导,则函数f(x)在点x0处连续

查看答案和解析>>

证明:若函数f(x)在点x0处可导,则函数f(x)在点x0处连续

查看答案和解析>>

已知函数f(x)=lnx-ax.
(Ⅰ)求函数f(x)的极值,
(Ⅱ)已知过点P(1,f(1)),Q(e,f(e))的直线为l,则必存在x0∈(1,e),使曲线y=f(x)在点(x0,f(x0))处的切线与直线l平行,求x0的值,
(Ⅲ)已知函数g(x)图象在[0,1]上连续不断,且函数g(x)的导函数g'(x)在区间(0,1)内单调递减,若g(1)=0,试用上述结论证明:对于任意x∈(0,1),恒有g(x)>g(0)(1-x)成立.

查看答案和解析>>

已知函数f(x)=mx3+nx2(m、n∈R,m≠0)的图象在(2,f(2))处的切线与x轴平行.
(1)求n,m的关系式并求f(x)的单调减区间;
(2)证明:对任意实数0<x1<x2<1,关于x的方程:f′(x)-
f(x2)-f(x1)
x2-x1
=0
在(x1,x2)恒有实数解
(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f(x)是在闭区间[a,b]上连续不断的函数,且在区间(a,b)内导数都存在,则在(a,b)内至少存在一点x0,使得f′(x0)=
f(b)-f(a)
b-a
.如我们所学过的指、对数函数,正、余弦函数等都符合拉格朗日中值定理条件.试用拉格朗日中值定理证明:
当0<a<b时,
b-a
b
<ln
b
a
b-a
a
(可不用证明函数的连续性和可导性).

查看答案和解析>>


同步练习册答案