理解曲线的方程和方程的曲线. 查看更多

 

题目列表(包括答案和解析)

已知椭圆C:的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似三角形,则称这两个椭圆为“相似椭圆”,且特征三角形的相似比即为相似椭圆的相似比.已知椭圆C1以抛物线的焦点为一个焦点,且椭圆上任意一点到两焦点的距离之和为4.(1)若椭圆C2与椭圆C1相似,且相似比为2,求椭圆C2的方程.
(2)已知点P(m,n)(mn≠0)是椭圆C1上的任一点,若点Q是直线y=nx与抛物线异于原点的交点,证明点Q一定落在双曲线4x2-4y2=1上.
(3)已知直线l:y=x+1,与椭圆C1相似且短半轴长为b的椭圆为Cb,是否存在正方形ABCD,使得A,C在直线l上,B,D在曲线Cb上,若存在求出函数f(b)=SABCD的解析式及定义域,若不存在,请说明理由.

查看答案和解析>>

(本小题满分12分)

设函数,曲线在点处的切线方程

(1)求的解析式,并判断函数的图像是否为中心对称图形?若是,请求其对称中心;否则说明理由。

(2)证明:曲线上任一点的切线与直线和直线所围三角形的面积为定值,并求出此定值.

(3) 将函数的图象向左平移一个单位后与抛物线为非0常数)的图象有几个交点?(说明理由)

 

查看答案和解析>>

(本小题满分12分)
设函数,曲线在点处的切线方程
(1)求的解析式,并判断函数的图像是否为中心对称图形?若是,请求其对称中心;否则说明理由。
(2)证明:曲线上任一点的切线与直线和直线所围三角形的面积为定值,并求出此定值.
(3) 将函数的图象向左平移一个单位后与抛物线为非0常数)的图象有几个交点?(说明理由)

查看答案和解析>>

(本小题满分12分)
设函数,曲线在点处的切线方程
(1)求的解析式,并判断函数的图像是否为中心对称图形?若是,请求其对称中心;否则说明理由。
(2)证明:曲线上任一点的切线与直线和直线所围三角形的面积为定值,并求出此定值.
(3) 将函数的图象向左平移一个单位后与抛物线为非0常数)的图象有几个交点?(说明理由)

查看答案和解析>>

设函数f(x)=ax+(a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方程为y=3.
(Ⅰ)求f(x)的解析式,并判断函数y=f(x)的图象是否为中心对称图形?若是,请求其对称中心;否则说明理由.
(II)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,并求出此定值.
(III) 将函数y=f(x)的图象向左平移一个单位后与抛物线y=ax2(a为非0常数)的图象有几个交点?(说明理由)

查看答案和解析>>


同步练习册答案