22.解:(1)设P(x.y)是函数的图象上任意一点.则容易求得P点关于直线x=1的对称点为的图象上. .------2分 的一个极值点. ------4分 ----6分 (2)由 --10分 时恒成立. 时的最小值. 即可求得m的取值范围. --------------------14分 查看更多

 

题目列表(包括答案和解析)

设函数y=f(x)=ax+
1x+b
(a≠0)
的图象过点(0,-1)且与直线y=-1有且只有一个公共点;设点P(x0,y0)是函数y=f(x)图象上任意一点,过点P分别作直线y=x和直线x=1的垂线,垂足分别是M,N.
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)的图象是一个中心对称图形,并求其对称中心Q;
(3)证明:线段PM,PN长度的乘积PM•PN为定值;并用点P横坐标x0表示四边形QMPN的面积..

查看答案和解析>>

设函数y=f(x)=ax+
1
x+b
(a≠0)
的图象过点(0,-1)且与直线y=-1有且只有一个公共点;设点P(x0,y0)是函数y=f(x)图象上任意一点,过点P分别作直线y=x和直线x=1的垂线,垂足分别是M,N.
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)的图象是一个中心对称图形,并求其对称中心Q;
(3)证明:线段PM,PN长度的乘积PM•PN为定值;并用点P横坐标x0表示四边形QMPN的面积..

查看答案和解析>>

设函数y=数学公式的图象过点(0,-1)且与直线y=-1有且只有一个公共点;设点P(x0,y0)是函数y=f(x)图象上任意一点,过点P分别作直线y=x和直线x=1的垂线,垂足分别是M,N.
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)的图象是一个中心对称图形,并求其对称中心Q;
(3)证明:线段PM,PN长度的乘积PM•PN为定值;并用点P横坐标x0表示四边形QMPN的面积..

查看答案和解析>>

设函数y=f(x)对任意的实数x,都有,且当x∈[0,1]时,f(x)=2yx2(1-x).

(1)若x∈[1,2]时,求y=f(x)的解析式;

(2)对于函数y=f(x)(x∈[0,+∞)),试问:在它的图象上是否存在点P,使得函数在点P处的切线与x+y=0平行.若存在,那么这样的点P有几个;若不存在,说明理由.

(3)已知n∈N*,且xn∈[n,n+1],记Sn=f(x1)+f(x2)+…+f(xn),求证:0≤Sn<4.

查看答案和解析>>

设函数y=f(x)对任意的实数x,都有,且当x∈[0,1]时,f(x)=27x2(1-x).
(1)若x∈[1,2]时,求y=f(x)的解析式;
(2)对于函数y=f(x)(x∈[0,+∞)),试问:在它的图象上是否存在点P,使得函数在点P处的切线与 x+y=0平行.若存在,那么这样的点P有几个;若不存在,说明理由.
(3)已知 n∈N*,且 xn∈x[n,n+1],记 Sn=f(x1)+f(x2)+…+f(xn),求证:0≤Sn<4.

查看答案和解析>>


同步练习册答案