⑴设椭圆的半焦距为.依题意.解得. 由.得 ∴所求椭圆方程为 ⑵∵.∴. 设.其坐标满足方程.消去并整理得 . 则 故. ∵. ∴ ∴.经检验满足式. ⑶由已知..可得 将代入椭圆方程.整理得 ∴. ∴ 当且仅当.即时等号成立. 经检验.满足(*)式. 当时. 综上可知. 所以.当最大时.的面积取得最大值. 查看更多

 

题目列表(包括答案和解析)

(2007·广东)设椭圆的半焦距为c,直线l(0a)(b0),已知原点到直线l的距离等于,则椭圆的离心率为

[  ]

A

B

C

D

查看答案和解析>>

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0).
(1)设椭圆的半焦距c=1,且a2,b2,c2成等差数列,求椭圆C的方程;
(2)设(1)中的椭圆C与直线y=kx+1相交于P、Q两点,求
OP
OQ
的取值范围;
(3)设A为椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴的一个端点,B为椭圆短轴的一个端点,F为椭圆C的一个焦点,O为坐标原点,记∠BFO=θ.当椭圆C同 时满足下列两个条件:①
π
6
≤θ≤
π
4
;②O到直线AB的距离为
2
2
,求椭圆长轴长的取值范围

查看答案和解析>>

精英家教网已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0).
(1)设椭圆的半焦距c=1,且a2,b2,c2成等差数列,求椭圆C的方程;
(2)对(1)中的椭圆C,直线y=x+1与C交于P、Q两点,求|PQ|的值;
(3)设B为椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的短轴的一个端点,F为椭圆C的一个焦点,O为坐标原点,记∠BFO=θ.当椭圆C同时满足下列两个条件:①
π
6
≤θ≤
π
4
;②a2+b2=2a2b2.求椭圆长轴的取值范围.

查看答案和解析>>

已知椭圆C:(a>b>0).
(1)设椭圆的半焦距c=1,且a2,b2,c2成等差数列,求椭圆C的方程;
(2)对(1)中的椭圆C,直线y=x+1与C交于P、Q两点,求|PQ|的值;
(3)设B为椭圆C:(a>b>0)的短轴的一个端点,F为椭圆C的一个焦点,O为坐标原点,记∠BFO=θ.当椭圆C同时满足下列两个条件:①;②a2+b2=2a2b2.求椭圆长轴的取值范围.

查看答案和解析>>

(2010•台州一模)设F1,F2分别是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,已知点P(
a2
c
3
b
)(其中c为椭圆的半焦距),若线段PF1的中垂线恰好过点F2,则椭圆离心率的值为(  )

查看答案和解析>>


同步练习册答案