18.解:(1) 分组 频数 频率 [10.75.10.85) 3 0.03 [10.85.10.95) 9 0.09 [10.95.11.05) 13 0.13 [11.05.11.15) 16 0.16 [11.15.11.25) 26 0.26 [11.25.11.35) 20 0.20 [11.35.11.45) 7 0.07 [11.45.11.55) 4 0.04 [11.55.11.65) 2 0.02 合计 100 (2)频率分布直方图略 (3)数据落在[10.95.11.35)范围内的概率为:0.13+0.16+0.26+0.20=0.75 (4)由图可知.数据小于11.20的概率约为0.54 甲班 乙班 2 5 6 6 2 8 6 6 4 2 7 4 6 8 2 8 2 4 5 6 8 6 9 2 19.解: 乙班级总体成绩优于甲班. 查看更多

 

题目列表(包括答案和解析)

袋中装有10个大小相同的小球,其中黑球3个,白球n,(4≤n≤6)个,其余均为红球;
(1)从袋中一次任取2个球,如果这2个球颜色相同的概率是
415
,求红球的个数.
(2)在(1)的条件下,从袋中任取2个球,若取一个白球记1分,取一个黑球记2分,取一个红球记3分,用ξ表示取出的两个球的得分的和;
①求随机变量ξ的分布列及期望Eξ.^
②记“关于x的不等式ξx2-ξx+1>0的解集是实数集R”为事件A,求事件A发生的概率.

查看答案和解析>>

已知,(其中

⑴求

⑵试比较的大小,并说明理由.

【解析】第一问中取,则;                         …………1分

对等式两边求导,得

,则得到结论

第二问中,要比较的大小,即比较:的大小,归纳猜想可得结论当时,

时,

时,

猜想:当时,运用数学归纳法证明即可。

解:⑴取,则;                         …………1分

对等式两边求导,得

,则。       …………4分

⑵要比较的大小,即比较:的大小,

时,

时,

时,;                              …………6分

猜想:当时,,下面用数学归纳法证明:

由上述过程可知,时结论成立,

假设当时结论成立,即

时,

时结论也成立,

∴当时,成立。                          …………11分

综上得,当时,

时,

时, 

 

查看答案和解析>>

已知函数f(x)(x∈R)满足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的实数x只有一个.

(1)求函数f(x)的表达式;

(2)若数列{an}满足a1,an+1=f(an),bn-1,n∈N*,证明数列{bn}是等比数列,并求出{bn}的通项公式;

(3)在(2)的条件下,证明:a1b1+a2b2+…+anbn<1(n∈N*).

【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.

由f(x)=2x只有一解,即=2x,

也就是2ax2-2(1+b)x=0(a≠0)只有一解,

∴b=-1.∴a=-1.故f(x)=.…………………………………………4分

(2)an+1=f(an)=(n∈N*),bn-1, ∴

∴{bn}为等比数列,q=.又∵a1,∴b1-1=

bn=b1qn-1n-1n(n∈N*).……………………………9分

(3)证明:∵anbn=an=1-an=1-

∴a1b1+a2b2+…+anbn+…+<+…+

=1-<1(n∈N*).

 

查看答案和解析>>

 

(本题满分12分)已知函数为常数,,且 是方程的解

   (1)求的值;

   (2)当时,求函数的值域.

 

查看答案和解析>>

已知函数, 且.

(1)求的值; (2)求的值;(3)解不等式.(10分)

 

查看答案和解析>>


同步练习册答案