22. 解:(1)设. ------3分 是上的增函数.且. 是上的增函数. .得到, 的取值范围为 -------5分 (2)由条件得到. 猜想最大整数 ---------6分 现在证明对任意恒成立. 等价于. ----.8分 设.-----.9分 当时..当时.. -------10分 所以对任意的都有. -------.11分 即对任意恒成立; 所以整数的最大值为2. -----------.12分 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)已知函数f(x)=x2-1(x≥1)的图象是C1,函数y=g(x)的图象C2C1关于直线y=x对称.
(1)求函数y=g(x)的解析式及定义域M
(2)对于函数y=h(x),如果存在一个正的常数a,使得定义域A内的任意两个不等的值x1x2都有|h(x1)-h(x2)|≤a|x1x2|成立,则称函数y=h(x)为A的利普希茨Ⅰ类函数.试证明:y=g(x)是M上的利普希茨Ⅰ类函数;
(3)设AB是曲线C2上任意不同两点,证明:直线AB与直线y=x必相交.

查看答案和解析>>

(本小题满分12分)

设函数f(x)=ax+(a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方程为y=3。

(Ⅰ)求f(x)的解析式:

(Ⅱ)证明:函数y=f(x)的图像是一个中心对称图形,并求其对称中心;

(Ⅲ)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,并求出此定值。

查看答案和解析>>

(本小题满分12分)

设函数f(x)=ax+(a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方程为y=3。

(Ⅰ)求f(x)的解析式:

(Ⅱ)证明:函数y=f(x)的图像是一个中心对称图形,并求其对称中心;

(Ⅲ)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,并求出此定值。

查看答案和解析>>

(本小题满分12分)

设函数,曲线在点处的切线方程

(1)求的解析式,并判断函数的图像是否为中心对称图形?若是,请求其对称中心;否则说明理由。

(2)证明:曲线上任一点的切线与直线和直线所围三角形的面积为定值,并求出此定值.

(3) 将函数的图象向左平移一个单位后与抛物线为非0常数)的图象有几个交点?(说明理由)

 

查看答案和解析>>

(本小题满分12分)

已知函数f(x)是定义在[-e,0)∪(0,e]上的奇函数,当x∈(0,e],f(x)=ax+lnx(其中e是自然对数的底数,a∈R)

   (1)求f(x)的解析式;

   (2)设g(x)=,x∈[-e,0),求证:当a=-1时,f(x)>g(x)+;

   (3)是否存在实数a,使得当x∈[-e,0)时f(x)的最小值是3 如果存在,求出实数a的值;如果不存在,请说明理由.

 

 

查看答案和解析>>


同步练习册答案