解:(Ⅰ)在中.令n=1.可得.即 当时..则 .即 ∵ ∴.即当时. 又 ∴数列是首项和公差均为1的等差数列 于是.高☆考♂资♀源?网 ☆ 从而 得. 所以 两式相减得 证法1:∵ ∴数列是增数列 故.命题得证. 证法2:要证.即证 .命题得证. 证法3:数学归纳法证明(略).高☆考♂资♀源?网 ☆ 查看更多

 

题目列表(包括答案和解析)

已知数列是各项均不为0的等差数列,公差为d,为其前n项和,且满足,.数列满足,为数列的前n项和.

(1)求数列的通项公式和数列的前n项和

(2)若对任意的,不等式恒成立,求实数的取值范围;

(3)是否存在正整数,使得成等比数列?若存在,求出所有的值;若不存在,请说明理由.

【解析】第一问利用在中,令n=1,n=2,

   即      

解得,, [

时,满足

第二问,①当n为偶数时,要使不等式恒成立,即需不等式恒成立.   

 ,等号在n=2时取得.

此时 需满足.  

②当n为奇数时,要使不等式恒成立,即需不等式恒成立.     

 是随n的增大而增大, n=1时取得最小值-6.

此时 需满足

第三问

     若成等比数列,则

即.

,可得,即

        .

(1)(法一)在中,令n=1,n=2,

   即      

解得,, [

时,满足

(2)①当n为偶数时,要使不等式恒成立,即需不等式恒成立.   

 ,等号在n=2时取得.

此时 需满足.  

②当n为奇数时,要使不等式恒成立,即需不等式恒成立.     

 是随n的增大而增大, n=1时取得最小值-6.

此时 需满足

综合①、②可得的取值范围是

(3)

     若成等比数列,则

即.

,可得,即

,且m>1,所以m=2,此时n=12.

因此,当且仅当m=2, n=12时,数列中的成等比数列

 

查看答案和解析>>

已知二次函数f(x)=x2-ax+a(x∈R)同时满足:
①不等式f(x)≤0的解集有且只有一个元素;
②在定义域内存在0<x1<x2,使得不等式f(x1)>f(x2)成立.
设数列{an}的前n项和Sn=f(n),
(1)求数列{an}的通项公式;
(2)数列{bn}中,令bn=
1,  n=1
an+5
2
,n≥2
,Tn=b121+b222+b323+…+bn2n,求Tn
(3)设各项均不为零的数列{cn}中,所有满足ci•ci+1<0的正整数i的个数称为这个数列{cn}的变号数.令cn=1-
a
an
(n为正整数),求数列{cn}的变号数.

查看答案和解析>>

已知二次函数f(x)=x2-ax+a(x∈R)同时满足:
①不等式f(x)≤0的解集有且只有一个元素;
②在定义域内存在0<x1<x2,使得不等式f(x1)>f(x2)成立.
设数列{an}的前n项和Sn=f(n),
(1)求数列{an}的通项公式;
(2)数列{bn}中,令,Tn=,求Tn
(3)设各项均不为零的数列{cn}中,所有满足ci•ci+1<0的正整数i的个数称为这个数列{cn}的变号数.令(n为正整数),求数列{cn}的变号数.

查看答案和解析>>

已知二次函数f(x)=x2-ax+a(x∈R)同时满足:

①不等式f(x)≤0的解集有且只有一个元素;

②在定义域内存在0<x1<x2,使得不等式f(x1)>f(x2)成立,设数列{an}的前n项和Sn=f(n).

(Ⅰ)求函数f(x)的表达式;

(Ⅱ)求数列{an}的通项公式;

(Ⅲ)设各项均不为0的数列{cn}中,所有满足ci·ci+1<0的整数i的个数称为这个数列{cn}的变号数,令(n∈N*),求数列{cn}的变号数.

查看答案和解析>>

已知二次函数f(x)=x2-ax+a(x∈R)同时满足:①不等式f(x)≤0的解集有且只有一个元素;②在定义域内存在0<x1<x2,使得不等式f(x1)>f(x2)成立,设数列{an}的前n项和Sn=f(n).
(I)求函数f(x)的表达式;
(II)设各项均不为0的数列{bn}中,所有满足bi•bi+1<0的整数i的个数称为这个数列{bn}的变号数,令bn=1-
aan
(n∈N*),求数列{bn}的变号数.

查看答案和解析>>


同步练习册答案