4. 已知是曲线(与曲线) 的一个共点.F为曲线的焦点. (I) 求曲线的方程 (II) 设.求当取得最小值时的曲线的另一个焦点为B.与曲线的另一个焦点为C.求与AFC的面积之比. 查看更多

 

题目列表(包括答案和解析)

(本小题满分13分)

  如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的

  左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭

  圆的焦点,设为该双曲线上异于顶点的任一点,直线与椭圆的交点

  分别 为

   (Ⅰ)求椭圆和双曲线的标准方程; 

   (Ⅱ)设直线的斜率分别为,证明

   (Ⅲ)是否存在常数,使得恒成立?

      若存在,求的值;若不存在,请说明理由.

                                                             

查看答案和解析>>

(本小题满分13分)已知AB分别是直线yxy=-x上的两个动点,线段AB的长为2DAB的中点.
(1)求动点D的轨迹C的方程;
(2)若过点(1,0)的直线l与曲线C交于不同两点PQ
①当|PQ|=3时,求直线l的方程;
②设点E(m,0)是x轴上一点,求当·恒为定值时E点的坐标及定值.

查看答案和解析>>

(本小题满分13分)(第一问8分,第二问5分)

已知函数f(x)=2lnxg(x)=ax2+3x.

(1)设直线x=1与曲线yf(x)和yg(x)分别相交于点PQ,且曲线yf(x)和yg(x)在点PQ处的切线平行,若方程f(x2+1)+g(x)=3xk有四个不同的实根,求实数k的取值范围;

(2)设函数F(x)满足F(x)+xf′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分别是函数f(x)与g(x)的导函数;试问是否存在实数a,使得当x∈(0,1]时,F(x)取得最大值,若存在,求出a的取值范围;若不存在,说明理由.

 

查看答案和解析>>

(本小题满分13分)

已知点是直角坐标平面内的动点,点到直线(是正常数)的距离为,到点的距离为,且1.

 

(1)求动点P所在曲线C的方程;

(2)直线过点F且与曲线C交于不同两点A、B,分别过A、B点作直线的垂线,对应的垂足分别为,求证=

(3)记(A、B、是(2)中的点),,求的值.

 

查看答案和解析>>

(本小题满分13分)已知函数

(I)若函数时取到极值,求实数的值;

(II)试讨论函数的单调性;

(III)当时,在曲线上是否存在这样的两点A,B,使得在点A、B处的切线都与y轴垂直,且线段AB与x轴有公共点,若存在,试求的取值范围;若不存在,请说明理由.

 

查看答案和解析>>


同步练习册答案