22. 已知函数在区间上单调递增.在区间上单调递减. (1)求a的值, (2)若斜率为24的直线是曲线的切线.求此直线方程, (3)是否存在实数b.使得函数的图象与函数的图象恰有2个不 同交点?若存在.求出实数b的值,若不存在.试说明理由. 查看更多

 

题目列表(包括答案和解析)

本题满分14分)

已知函数,,设.

(Ⅰ)求函数的单调区间;

(Ⅱ)若以函数图像上任意一点为切点的切线的斜率恒成立,求实数的最小值;

(Ⅲ)是否存在实数,使得函数的图像与函数的图像恰有四个不同的交点?若存在,求出实数的取值范围;若不存在,说明理由.

 

 

查看答案和解析>>

(本小题满分14分)已知函数处的切线方程为 ,

(1)若函数时有极值,求的表达式;

(2)在(1)条件下,若函数上的值域为,求m的取值范围;

(3)若函数在区间上单调递增,求b的取值范围. [

 

查看答案和解析>>

(本小题满分14分)

已知函数.

(1)如果函数上是单调增函数,求的取值范围;

(2)是否存在实数,使得方程在区间内有且只有两个不相等的实数根?若存在,请求出的取值范围;若不存在,请说明理由.

 

查看答案和解析>>

(本小题满分14分)已知函数,且.

(1)判断的奇偶性并说明理由;    

(2)判断在区间上的单调性,并证明你的结论;

(3)若在区间上,不等式恒成立,试确定实数的取值范围.

 

查看答案和解析>>

(本小题满分14分)已知函数.

(1)试讨论函数的单调性;

(2)若,求函数上的最大值和最小值;

(3)若函数在区间上只有一个零点,求的取值范围。

 

查看答案和解析>>


同步练习册答案