3.五个人排成一排.甲.乙不相邻.且甲.丙也不相邻的不同排法的种数为 ( ) A.60 B.48 C.36 D.24 解析:五个人排成一排.其中甲.乙不相邻且甲.丙也不相邻的排法可分为两类:一类是甲.乙.丙互不相邻.此类方法有A·A=12种(先把除甲.乙.丙外的两个人排好.有A种方法.再把甲.乙.丙插入其中.有A种方法.因此此类方法有A·A=12种),另一类是乙.丙相邻但不与甲相邻.此类方法有A·A·A=24种方法(先把除甲.乙.丙外的两人排好.有A种方法.再从这两人所形成的三个空位中任选2个.作为甲和乙.丙的位置.此类方法有A·A·A=24种).综上所述.满足题意的方法种数共有12+24=36.选C. 答案:C 查看更多

 

题目列表(包括答案和解析)

五个人排成一排,按下列要求分别有多少种排法?

(1)其中甲不站排头;

(2)其中甲不站排头,乙不站排尾;

(3)其中甲、乙两人必须相邻;

(4)其中甲、乙两人必须不相邻;

(5)其中甲、乙中间有且只有一人;

(6)其中甲必须排在乙的右边.

查看答案和解析>>

五个人排成一排照相,其中甲不在正中间,且甲、乙两人必相邻,则有____________种不同的排法.

查看答案和解析>>

五个人站成一排,求在下列条件下的不同排法种数:
(1)甲必须在排头;
(2)甲、乙相邻;
(3)甲不在排头,并且乙不在排尾;
(4)其中甲、乙两人自左向右从高到矮排列且互不相邻.

查看答案和解析>>


同步练习册答案