22.= c=0.fノ(x)=3 x2+2ax+b.且fノ(1)= 3+2a+b=0. 查看更多

 

题目列表(包括答案和解析)

 [番茄花园1] (本题满分)在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足

(Ⅰ)求角C的大小;

(Ⅱ)求的最大值。

 (Ⅰ)解:由题意可知

absinC=,2abcosC.

所以tanC=.

因为0<C<

所以C=.

(Ⅱ)解:由已知sinA+sinB=sinA+sin(-C-A)=sinA+sin(-A)

                        =sinA+cosA+sinA=sin(A+)≤.

当△ABC为正三角形时取等号,

所以sinA+sinB的最大值是.

 

 


 [番茄花园1]1.

查看答案和解析>>

甲船由岛出发向北偏东的方向作匀速直线航行,速度为海里∕小时,在甲船从岛出发的同时,乙船从岛正南海里处的岛出发,朝北偏东的方向作匀速直线航行,速度为海里∕小时。

⑴求出发小时时两船相距多少海里?

⑴   两船出发后多长时间相距最近?最近距离为多少海里?

【解析】第一问中根据时间得到出发小时时两船相距的海里为

第二问设时间为t,则

利用二次函数求得最值,

解:⑴依题意有:两船相距

答:出发3小时时两船相距海里                           

⑵两船出发后t小时时相距最近,即

即当t=4时两船最近,最近距离为海里。

 

查看答案和解析>>

在△ABC中,为三个内角为三条边,

(I)判断△ABC的形状;

(II)若,求的取值范围.

【解析】本题主要考查正余弦定理及向量运算

第一问利用正弦定理可知,边化为角得到

所以得到B=2C,然后利用内角和定理得到三角形的形状。

第二问中,

得到。

(1)解:由及正弦定理有:

∴B=2C,或B+2C,若B=2C,且,∴;∴B+2C,则A=C,∴是等腰三角形。

(2)

 

查看答案和解析>>

已知函数为实数).

(Ⅰ)当时,求的最小值;

(Ⅱ)若上是单调函数,求的取值范围.

【解析】第一问中由题意可知:. ∵ ∴  ∴.

时,; 当时,. 故.

第二问.

时,,在上有递增,符合题意;  

,则,∴上恒成立.转化后解决最值即可。

解:(Ⅰ) 由题意可知:. ∵ ∴  ∴.

时,; 当时,. 故.

(Ⅱ) .

时,,在上有递增,符合题意;  

,则,∴上恒成立.∵二次函数的对称轴为,且

  .   综上

 

查看答案和解析>>

已知f(x)是偶函数,且在(-∞,0]上单调递减,对任意x∈R,x≠0,都有f(x)+f(
1
x
)=-1+2log2(x2+
1
x2
)

(Ⅰ)指出f(x)在[0,+∞)上的单调性(不要求证明),并求f(1)的值;
(Ⅱ)k为常数,-1<k<1,解关于x的不等式f(
kx+3
x2+9
)>
1
2

查看答案和解析>>


同步练习册答案