题目列表(包括答案和解析)
甲船由岛出发向北偏东的方向作匀速直线航行,速度为海里∕小时,在甲船从岛出发的同时,乙船从岛正南海里处的岛出发,朝北偏东的方向作匀速直线航行,速度为海里∕小时。
⑴求出发小时时两船相距多少海里?
⑴ 两船出发后多长时间相距最近?最近距离为多少海里?
【解析】第一问中根据时间得到出发小时时两船相距的海里为
第二问设时间为t,则
利用二次函数求得最值,
解:⑴依题意有:两船相距
答:出发3小时时两船相距海里
⑵两船出发后t小时时相距最近,即
即当t=4时两船最近,最近距离为海里。
在△ABC中,为三个内角为三条边,且
(I)判断△ABC的形状;
(II)若,求的取值范围.
【解析】本题主要考查正余弦定理及向量运算
第一问利用正弦定理可知,边化为角得到
所以得到B=2C,然后利用内角和定理得到三角形的形状。
第二问中,
得到。
(1)解:由及正弦定理有:
∴B=2C,或B+2C,若B=2C,且,∴,;∴B+2C,则A=C,∴是等腰三角形。
(2)
已知函数(为实数).
(Ⅰ)当时,求的最小值;
(Ⅱ)若在上是单调函数,求的取值范围.
【解析】第一问中由题意可知:. ∵ ∴ ∴.
当时,; 当时,. 故.
第二问.
当时,,在上有,递增,符合题意;
令,则,∴或在上恒成立.转化后解决最值即可。
解:(Ⅰ) 由题意可知:. ∵ ∴ ∴.
当时,; 当时,. 故.
(Ⅱ) .
当时,,在上有,递增,符合题意;
令,则,∴或在上恒成立.∵二次函数的对称轴为,且
∴或或或
或. 综上
1 |
x |
1 |
x2 |
kx+3 | ||
|
1 |
2 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com