画出函数y=x及y=的图象.并且说明这两个函数的相同性质和不同性质. 解:相同性质:两图象都位于y轴右方.都经过点(1.0).这说明两函数的定义域都是.且当x=1,y=0. 不同性质:y=x的图象是上升的曲线.y=的图象是下降的曲线.这说明前者在上是增函数.后者在上是减函数. 查看更多

 

题目列表(包括答案和解析)

已知y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x-x2
(1)求y=f(x)的解析式;
(2)画出函数y=f(x)的图象,并指出f(x)的单调区间及在每个区间上的增减性;
(3)若函数y=f(x)的定义域为[a,b],值域为[
1
b
,  
1
a
] (1≤a<b)
,求实数a、b的值.

查看答案和解析>>

已知y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x-x2
(1)求y=f(x)的解析式;
(2)画出函数y=f(x)的图象,并指出f(x)的单调区间及在每个区间上的增减性;
(3)若函数y=f(x)的定义域为[a,b],值域为,求实数a、b的值.

查看答案和解析>>

已知函数f(x)=2sinx(sinx+cosx)-1
(1)求:函数f(x)的最大值及取得最大值时的x值;
(2)在给出的直角坐标系中,用五点作图法画出函数y=f(x)一个周期内的图象
  x
  y

查看答案和解析>>

已知y=f(x)是定义在R上的函数,对于任意的x∈R,f(-x)+f(x)=0,且当x>0时,f(x)=-x2+2x+1.
(1)求y=f(x)的解析式;
(2)画出函数y=f(x)的图象,并指出f(x)的单调区间及在每个区间上的增减性;
(3)若函数f(x)在区间[-1,a-2]上单调递增,试确定a的取值范围.

查看答案和解析>>

已知y=f(x)是定义在R上的函数,对于任意的x∈R,f(-x)+f(x)=0,且当x≥0 时,f(x)=2x-x2
(1)求y=f(x)的解析式;
(2)画出函数y=f(x)的图象,并指出f(x)的单调区间及在每个区间上的增减性;
(3)若函数f(x)在区间[-1,a-2]上单调递增,试确定a的取值范围.

查看答案和解析>>


同步练习册答案