∴. ∴.18.解:. (1)的最小正周期为, (2)的最大值为和最小值, (3)因为.即. 即. 查看更多

 

题目列表(包括答案和解析)

海南清水湾天然浴场,景色秀丽,海湾内水清浪小,滩平坡缓,砂质细软,自然条件极为优越,是冲浪爱好者的好去处.已知海湾内海浪的高度y(米)是时间t(0≤t≤24,单位:小时)的函数,记y=f(t).下表是某日各时刻记录的浪高数据:
t 0 3 6 9 12 15 18 21 24
y 1.5 1.0 0.5 1.0 1.5 1.0 0.5 0.99 1.5
经长期观测,y=f(t)的曲线可近似地看成是函数y=Acosωt+b.
(1)根据以上数据,求函数y=Acosωt+b的最小正周期T,振幅A及函数解析式;
(2)依据规定,当海浪高度不低于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8:00至晚上20:00之间,有多少时间可供冲浪爱好者进行运动?

查看答案和解析>>

某港口海水的深度(米)是时间(时)()的函数,记为:

已知某日海水深度的数据如下:

(时)

0

3

6

9

12

15

18

21

24

(米)

10.0

13.0

9.9

7.0

10.0

13.0

10.1

7.0

10.0

经长期观察,的曲线可近似地看成函数的图象

(I)试根据以上数据,求出函数的振幅、最小正周期和表达式;

(II)一般情况下,船舶航行时,船底离海底的距离为米或米以上时认为是安全的(船舶停靠时,船底只需不碰海底即可)。某船吃水深度(船底离水面的距离)为米,如果该船希望在同一天内安全进出港,请问,它至多能在港内停留多长时间(忽略进出港所需时间)

【解析】第一问中利用三角函数的最小正周期为: T=12   振幅:A=3,b=10,  

第二问中,该船安全进出港,需满足:即:          ∴  ,可解得结论为得到。

 

查看答案和解析>>


同步练习册答案